2 research outputs found

    Physical layer security against eavesdropping in the internet of drones (IoD) based communication systems

    Get PDF
    rones or unmanned aerial vehicles (UAVs) communication technology, which has recently been thoroughly studied and adopted by 3GPP standard (Release 15) due to its dynamic, flexible, and flying nature, is expected to be an integral part of future wireless communications and Internet of drones (IoD) applications. However, due to the unique transmission characteristics and nature of UAV systems including broadcasting, dominant line of site and poor scattering, providing confidentiality for legitimate receivers against unintended ones (eavesdroppers) appears to be a challenging goal to achieve in such scenarios. Besides, the special features of UAVs represented by having limited power (battery-operated) and precessing (light RAM and CPU capabilities), makes applying complex cryptography approaches very challenging and inefficient for such systems. This motives the utilization of alternative approaches enabled by physical layer security (PLS) concept for securing UAV-based systems. Techniques based on PLS are deemed to be promising due to their ability to provide inherent secrecy that is complexity independent, where no matter what computational processing power the eavesdropper may have, there is no way to decrypt the PLS algorithms. This work is dedicated to highlight and overview the latest advances and state of art researches on the field of applying PLS to UAV systems in a unified and structured manner. Particularity, it discusses and explains the different, possible PLS scenarios and use cases of UAVs, which are categorized based on how the drone is utilized and employed in the communication system setup. The main classified categories include the deployment of the flying, mobile UAV as a 1) base station (BS), 2) user equipment (UE), 2) relay, or 4) jammer. Then, recommendations and future open research issues are stated and discussed.No sponso

    CP-Less OFDM With Alignment Signals for Enhancing Spectral Efficiency, Reducing Latency, and Improving PHY Security of 5G Services

    Get PDF
    Although orthogonal frequency-division multiplexing (OFDM) is a widely accepted waveform in many standards and is expected to keep its dominance in future 5G systems with various types of parameterized waveforms, its performance in terms of spectral efficiency as well as transmission latency is usually degraded due to the excessive usage of cyclic prefix (CP). Particularly, in highly dispersive channels, CP rate might be very large in order to maintain the low-complex frequency-domain equalization. In this paper, we propose a novel method that can fit the low latency and high spectral efficiency requirements of future 5G wireless services by eliminating the need for inserting CP between successive OFDM symbols while keeping the whole detection process the same at the receiver side. In order to achieve that, we utilize specially designed alignment signals that can cancel the interference of one symbol on the other and add an additional signal component that makes the signal circularly convolved with the channel at the receiver side. Simulation results prove the superiority of the proposed scheme in terms of enhancing spectral and power efficiency, reducing latency, and improving physical-layer security against eavesdropping while using a low-complexity one-tap frequency-domain equalizer. These numerous, simultaneous, and desirable advantages have the potential to make the proposed technique a suitable fit for future 5G wireless services and applications including Internet of Things-based massive machine-type communication, ultra-reliable and low-latency communication, and enhanced mobile broadband
    corecore