127 research outputs found

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606

    Event-Oriented Dynamic Adaptation of Workflows: Model, Architecture and Implementation

    Get PDF
    Workflow management is widely accepted as a core technology to support long-term business processes in heterogeneous and distributed environments. However, conventional workflow management systems do not provide sufficient flexibility support to cope with the broad range of failure situations that may occur during workflow execution. In particular, most systems do not allow to dynamically adapt a workflow due to a failure situation, e.g., to dynamically drop or insert execution steps. As a contribution to overcome these limitations, this dissertation introduces the agent-based workflow management system AgentWork. AgentWork supports the definition, the execution and, as its main contribution, the event-oriented and semi-automated dynamic adaptation of workflows. Two strategies for automatic workflow adaptation are provided. Predictive adaptation adapts workflow parts affected by a failure in advance (predictively), typically as soon as the failure is detected. This is advantageous in many situations and gives enough time to meet organizational constraints for adapted workflow parts. Reactive adaptation is typically performed when predictive adaptation is not possible. In this case, adaptation is performed when the affected workflow part is to be executed, e.g., before an activity is executed it is checked whether it is subject to a workflow adaptation such as dropping, postponement or replacement. In particular, the following contributions are provided by AgentWork: A Formal Model for Workflow Definition, Execution, and Estimation: In this context, AgentWork first provides an object-oriented workflow definition language. This language allows for the definition of a workflow\u92s control and data flow. Furthermore, a workflow\u92s cooperation with other workflows or workflow systems can be specified. Second, AgentWork provides a precise workflow execution model. This is necessary, as a running workflow usually is a complex collection of concurrent activities and data flow processes, and as failure situations and dynamic adaptations affect running workflows. Furthermore, mechanisms for the estimation of a workflow\u92s future execution behavior are provided. These mechanisms are of particular importance for predictive adaptation. Mechanisms for Determining and Processing Failure Events and Failure Actions: AgentWork provides mechanisms to decide whether an event constitutes a failure situation and what has to be done to cope with this failure. This is formally achieved by evaluating event-condition-action rules where the event-condition part describes under which condition an event has to be viewed as a failure event. The action part represents the necessary actions needed to cope with the failure. To support the temporal dimension of events and actions, this dissertation provides a novel event-condition-action model based on a temporal object-oriented logic. Mechanisms for the Adaptation of Affected Workflows: In case of failure situations it has to be decided how an affected workflow has to be dynamically adapted on the node and edge level. AgentWork provides a novel approach that combines the two principal strategies reactive adaptation and predictive adaptation. Depending on the context of the failure, the appropriate strategy is selected. Furthermore, control flow adaptation operators are provided which translate failure actions into structural control flow adaptations. Data flow operators adapt the data flow after a control flow adaptation, if necessary. Mechanisms for the Handling of Inter-Workflow Implications of Failure Situations: AgentWork provides novel mechanisms to decide whether a failure situation occurring to a workflow affects other workflows that communicate and cooperate with this workflow. In particular, AgentWork derives the temporal implications of a dynamic adaptation by estimating the duration that will be needed to process the changed workflow definition (in comparison with the original definition). Furthermore, qualitative implications of the dynamic change are determined. For this purpose, so-called quality measuring objects are introduced. All mechanisms provided by AgentWork include that users may interact during the failure handling process. In particular, the user has the possibility to reject or modify suggested workflow adaptations. A Prototypical Implementation: Finally, a prototypical Corba-based implementation of AgentWork is described. This implementation supports the integration of AgentWork into the distributed and heterogeneous environments of real-world organizations such as hospitals or insurance business enterprises

    A FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

    Get PDF
    An important trend in modern medicine is towards individualisation of healthcare to tailor care to the needs of the individual. This makes it possible, for example, to personalise diagnosis and treatment to improve outcome. However, the benefits of this can only be fully realised if healthcare and ICT resources are exploited (e.g. to provide access to relevant data, analysis algorithms, knowledge and expertise). Potentially, grid can play an important role in this by allowing sharing of resources and expertise to improve the quality of care. The integration of grid and the new concept of bioprofile represents a new topic in the healthgrid for individualisation of healthcare. A bioprofile represents a personal dynamic "fingerprint" that fuses together a person's current and past bio-history, biopatterns and prognosis. It combines not just data, but also analysis and predictions of future or likely susceptibility to disease, such as brain diseases and cancer. The creation and use of bioprofile require the support of a number of healthcare and ICT technologies and techniques, such as medical imaging and electrophysiology and related facilities, analysis tools, data storage and computation clusters. The need to share clinical data, storage and computation resources between different bioprofile centres creates not only local problems, but also global problems. Existing ICT technologies are inappropriate for bioprofiling because of the difficulties in the use and management of heterogeneous IT resources at different bioprofile centres. Grid as an emerging resource sharing concept fulfils the needs of bioprofile in several aspects, including discovery, access, monitoring and allocation of distributed bioprofile databases, computation resoiuces, bioprofile knowledge bases, etc. However, the challenge of how to integrate the grid and bioprofile technologies together in order to offer an advanced distributed bioprofile environment to support individualized healthcare remains. The aim of this project is to develop a framework for one of the key meta-level bioprofile applications: bioprofile analysis over grid to support individualised healthcare. Bioprofile analysis is a critical part of bioprofiling (i.e. the creation, use and update of bioprofiles). Analysis makes it possible, for example, to extract markers from data for diagnosis and to assess individual's health status. The framework provides a basis for a "grid-based" solution to the challenge of "distributed bioprofile analysis" in bioprofiling. The main contributions of the thesis are fourfold: A. An architecture for bioprofile analysis over grid. The design of a suitable aichitecture is fundamental to the development of any ICT systems. The architecture creates a meaiis for categorisation, determination and organisation of core grid components to support the development and use of grid for bioprofile analysis; B. A service model for bioprofile analysis over grid. The service model proposes a service design principle, a service architecture for bioprofile analysis over grid, and a distributed EEG analysis service model. The service design principle addresses the main service design considerations behind the service model, in the aspects of usability, flexibility, extensibility, reusability, etc. The service architecture identifies the main categories of services and outlines an approach in organising services to realise certain functionalities required by distributed bioprofile analysis applications. The EEG analysis service model demonstrates the utilisation and development of services to enable bioprofile analysis over grid; C. Two grid test-beds and a practical implementation of EEG analysis over grid. The two grid test-beds: the BIOPATTERN grid and PlymGRID are built based on existing grid middleware tools. They provide essential experimental platforms for research in bioprofiling over grid. The work here demonstrates how resources, grid middleware and services can be utilised, organised and implemented to support distributed EEG analysis for early detection of dementia. The distributed Electroencephalography (EEG) analysis environment can be used to support a variety of research activities in EEG analysis; D. A scheme for organising multiple (heterogeneous) descriptions of individual grid entities for knowledge representation of grid. The scheme solves the compatibility and adaptability problems in managing heterogeneous descriptions (i.e. descriptions using different languages and schemas/ontologies) for collaborated representation of a grid environment in different scales. It underpins the concept of bioprofile analysis over grid in the aspect of knowledge-based global coordination between components of bioprofile analysis over grid

    An architecture for regional health information networks addressing issues of modularity and interoperability, Journal of Telecommunications and Information Technology, 2005, nr 4

    Get PDF
    A fundamental pre-requisite for the establishment of a scaleable regional health information network (RHIN) is the development of an architectural framework and tools for the integration of specialized autonomous systems and e-health service platforms supported by an underlying health information infrastructure (HII). In this context, HYGEIAnet, which is the RHIN of Crete in Greece, has identified and utilized a number of critical software components enabling integrated access to clinically significant information, based on an open architecture addressing successfully the various interoperability challenges at hand. HYGEIAnet provides the framework for the reuse of standardized common components and public interfaces, thus enabling integrated and personalized delivery of healthcare

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases

    Design and realization of a middleware for mobile task coordination

    Get PDF
    The trend towards interconnection of applications has long been recognized as a key challenge for information systems design. Following this trend, organi- zations have developed and introduced many distributed systems with differ- ent functionalities. Furthermore, computing becomes today increasingly mobile; performances of mobile devices (i.e. PDAs and smartphones) as well as the expansion of high-speed mobile networks allows many tasks to be performed beyond stationary workspaces. The dramatic growth of stand-alone and partly incompatible applications will negatively affect the integration, coordination and communication for entire so- lution. Contemporary solutions focus on stationary systems only; the usage of mobile devices is limited to simple scenarios (i.e. information access). In order to support the seamless integration of mobile devices, future distributed solutions should take services and service meta-information into account (e.g. variation of network bandwidth, battery power, availability, connectivity, reachability, sensors data and locations of services and service providers). In this master thesis we want to analyze how a distributed environment with va- riety of separated (mobile) service providers - implemented with different tech- nologies - can be integrated and coordinated. Finding compromises between performance, comfort and intelligent intercommunication is the main goal of this thesis. Therefore, it is concentrated on the conceptualization and design of a central middleware component that provide the coordination and communication functionalities for stationary and mobile entities. In order to prove some possible communication scenarios, the thesis provides a middleware-based scenario

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum
    corecore