4,572 research outputs found
Some results on triangle partitions
We show that there exist efficient algorithms for the triangle packing
problem in colored permutation graphs, complete multipartite graphs,
distance-hereditary graphs, k-modular permutation graphs and complements of
k-partite graphs (when k is fixed). We show that there is an efficient
algorithm for C_4-packing on bipartite permutation graphs and we show that
C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite
graphs that have a triangle partition
Distinguishing partitions of complete multipartite graphs
A \textit{distinguishing partition} of a group with automorphism group
is a partition of that is fixed by no nontrivial element of
. In the event that is a complete multipartite graph with its
automorphism group, the existence of a distinguishing partition is equivalent
to the existence of an asymmetric hypergraph with prescribed edge sizes. An
asymptotic result is proven on the existence of a distinguishing partition when
is a complete multipartite graph with parts of size and
parts of size for small , and large , . A key tool
in making the estimate is counting the number of trees of particular classes
- β¦