12,928 research outputs found
Discovery of new mutually orthogonal bioorthogonal cycloaddition pairs through computational screening.
Density functional theory (DFT) calculations and experiments in tandem led to discoveries of new reactivities and selectivities involving bioorthogonal sydnone cycloadditions. Dibenzocyclooctyne derivatives (DIBAC and BARAC) were identified to be especially reactive dipolarophiles, which undergo the (3+2) cycloadditions with N-phenyl sydnone with the rate constant of up to 1.46 M-1 s-1. Most signifcantly, the sydnone-dibenzocyclooctyne and norbornene-tetrazine cycloadditions were predicted to be mutually orthogonal. This was validated experimentally and used for highly selective fluorescence labeling of two proteins simultaneously
Poly(ionic liquid)s: platform for CO2 capture and catalysis
Capture and conversion of CO2 are of great importance for
environment-friendly and sustainable development of human society. Poly(ionic
liquid)s (PILs) combine some unique properties of ILs with that of polymers and
are versatile materials for CO2 utilization. In this contribution, we briefly
outline innovative poly(ionic liquid)s emerged over the past few years, such as
polytriazoliums, deep eutectic monomer (DEM) based PILs, and polyurethane PILs.
Additionally, we discuss their advantages and challenges as materials for
Carbon Capture and Storage (CCS), and the fixation of CO2 into useful
materials.Comment: 13 pages, 5 figure
Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment
The rapidly increasing interest in the synthesis of antibody–drug conjugates as powerful targeted anticancer agents demonstrates the growing appreciation of the power of antibodies and antibody fragments as highly selective targeting moieties. This targeting ability is of particular interest in the area of photodynamic therapy, as the applicability of current clinical photosensitizers is limited by their relatively poor accumulation in target tissue in comparison to healthy tissue. Although synthesis of porphyrin–antibody conjugates has been previously demonstrated, existing work in this area has been hindered by the limitations of conventional antibody conjugation methods. This work describes the attachment of azide-functionalized, water-soluble porphyrins to a tratuzumab Fab fragment via a novel conjugation methodology. This method allows for the synthesis of a homogeneous product without the loss of structural stability associated with conventional methods of disulfide modification. Biological evaluation of the synthesized conjugates demonstrates excellent selectivity for a HER2 positive cell line over the control, with no dark toxicity observed in either case
Site Selective Antibody-Oligonucleotide Conjugation via Microbial Transglutaminase.
Nucleic Acid Therapeutics (NATs), including siRNAs and AntiSense Oligonucleotides (ASOs), have great potential to drug the undruggable genome. Targeting siRNAs and ASOs to specific cell types of interest has driven dramatic improvement in efficacy and reduction in toxicity. Indeed, conjugation of tris-GalNAc to siRNAs and ASOs has shown clinical efficacy in targeting diseases driven by liver hepatocytes. However, targeting non-hepatic diseases with oligonucleotide therapeutics has remained problematic for several reasons, including targeting specific cell types and endosomal escape. Monoclonal antibody (mAb) targeting of siRNAs and ASOs has the potential to deliver these drugs to a variety of specific cell and tissue types. However, most conjugation strategies rely on random chemical conjugation through lysine or cysteine residues resulting in conjugate heterogeneity and a distribution of Drug:Antibody Ratios (DAR). To produce homogeneous DAR-2 conjugates with two siRNAs per mAb, we developed a novel two-step conjugation procedure involving microbial transglutaminase (MTGase) tagging of the antibody C-terminus with an azide-functionalized linker peptide that can be subsequently conjugated to dibenzylcyclooctyne (DBCO) bearing oligonucleotides through azide-alkyne cycloaddition. Antibody-siRNA (and ASO) conjugates (ARCs) produced using this strategy are soluble, chemically defined targeted oligonucleotide therapeutics that have the potential to greatly increase the number of targetable cell types
Postsynthetic modification of zirconium metal-organic frameworks
Metal-organic frameworks (MOFs) have been in the spotlight for a number of years due to their chemical and topological versatility. As MOF research has progressed, highly functionalised materials have become desirable for specific applications, and in many cases the limitations of direct synthesis have been realised. This has resulted in the search for alternative synthetic routes, with postsynthetic modification (PSM), a term used to collectively describe the functionalisation of pre-synthesised MOFs whilst maintaining their desired characteristics, becoming a topic of interest. Advances in the scope of reactions performed are reported regularly; however reactions requiring harsh conditions can result in degradation of the framework. Zirconium-based MOFs present high chemical, thermal and mechanical stabilities, offering wider opportunities for the scope of reaction conditions that can be tolerated, which has seen a number of successful examples reported. This microreview discusses pertinent examples of PSM resulting in enhanced properties for specific applications, alongside fundamental transformations, which are categorised broadly into covalent modifications, surface transformations, metalations, linker and metal exchange, and cluster modifications
Recommended from our members
CO2 conversion to phenyl isocyanates by uranium(vi) bis(imido) complexes.
Uranium(vi) trans-bis(imido) complexes [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(NPhR)] react with CO2 to eliminate phenyl isocyanates and afford uranium(vi) trans-[O[double bond, length as m-dash]U[double bond, length as m-dash]NR]2+ complexes, including [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)] that was crystallographically characterized. DFT studies indicate that the reaction proceeds by endergonic formation of a cycloaddition intermediate; the secondary reaction to form a dioxo uranyl complex is both thermodynamically and kinetically hindered
Stereodivergent, Diels-Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application.
Chiral α,β-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic γ- and δ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcohols, and application to a formal synthesis of (+)-dihydrocompactin is described. A combined experimental and computational investigation of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of Brønsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with experimentally observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR analysis of diene alcohol-Brønsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through hydrogen-bonding effects
Synthesis of enantiomeric polyhydroxyalkylpyrrolidines from 1,3-dipolar cycloadducts. Evaluation as inhibitors of a β-galactofuranosidase
Enantiomeric 2,3,4-tris(hydroxyalkyl)-5-phenylpyrrolidines have been synthesized from the major cycloadducts obtained by the 1,3-dipolar cycloaddition of sugar enones with azomethine ylides derived from natural amino acids. Reduction of the ketone carbonyl group of the cycloadducts, which possess a basic structure of bicyclic 6-(menthyloxy)hexahydropyrano[4,3-c]pyrrol-7(6H)one, afforded a number of pyrrolidine-based bicyclic systems. A sequence of reactions, which involved hydrolysis of the menthyloxy substituent, reduction, N-protection, and degradative oxidation, afforded varied pyrrolidine structures having diverse configurations and patterns of substitution; in particular, polyhydroxylated derivatives have been obtained. The unprotected products were isolated as pyrrolidinium trifluoroacetates. Because of the furanose-like nature of the target trihydroxyalkyl pyrrolidines, these molecules have been evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum. The compounds showed practically no inhibitory activity for concentration of pyrrolidines in the range of 0.1–1.6 mM.Fil: Oliveira Udry, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Repetto, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Vega, Daniel Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Varela, Oscar Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentin
Selective cyclodimerization of epichlorohydrin to dioxane derivatives over MOFs
Glycerol can be converted to valuable products such as epichlorohydrin which is an important intermediate applied in various industries. For example, dioxane derivatives, which are important pharmaceuticals, can be obtained from epichlorohydrin. In the present study, ZIF-8, ZIF-67, MIL-100, and UiO-66 were applied for the direct cyclodimerization of epichlorohydrin. These MOFs were selected because they were already applied as active catalysts in ring opening of epoxides. Among them, ZIF-8 showed the highest activity and selectivity in the absence of any solvent or co-catalyst. Using ZIF-8 as a catalyst, the cyclodimer product (1,4-dioxane 2,5-bis-chloromethyl) was obtained in a yield of about 70% which was significantly superior to previous homo or heterogeneous catalysts for this reaction. Due to ZIF-8 structure and the proposed mechanism, the cyclodimerization reaction catalyzed either by the defects in the structure and/or on the surface. Furthermore, acidic-basic characteristics were also in play. The NH3 and CO2 temperature-programed desorption technique were utilized to identify the active sites and thereby reaction mechanism. Moreover, because of similar properties of ZIF-8 to zeolites, the activity of commercial ZSM-5 for the same reaction was also investigated in this work
Effect of building block transformation in covalent triazine‐based frameworks for enhanced CO2 uptake and metal‐free heterogeneous catalysis
Invited for the cover of this issue is the group of Pascal Van Der Voort at the University of Ghent and colleagues at Technische Universitat Berlin. The image depicts the covalent triazine frameworks reported in the manuscript for the sorption of CO2 and also in metal-free catalysis. Read the full text of the article at 10.1002/chem.201903926
- …
