321 research outputs found

    Genomic Interpreter: A Hierarchical Genomic Deep Neural Network with 1D Shifted Window Transformer

    Full text link
    Given the increasing volume and quality of genomics data, extracting new insights requires interpretable machine-learning models. This work presents Genomic Interpreter: a novel architecture for genomic assay prediction. This model outperforms the state-of-the-art models for genomic assay prediction tasks. Our model can identify hierarchical dependencies in genomic sites. This is achieved through the integration of 1D-Swin, a novel Transformer-based block designed by us for modelling long-range hierarchical data. Evaluated on a dataset containing 38,171 DNA segments of 17K base pairs, Genomic Interpreter demonstrates superior performance in chromatin accessibility and gene expression prediction and unmasks the underlying `syntax' of gene regulation

    Efficient Methods for the Design and Training of Neural Networks

    Get PDF
    The field of artificial intelligence has seen significant advancements with the development of neural networks, which have numerous applications in computer vision, natural language processing, and speech processing. Despite these advancements, designing and training these networks still pose numerous challenges. This thesis aims to address two critical aspects of neural network development, design and training, within the context of computer vision tasks. The thesis focuses on three main challenges in the development of neural networks. The first challenge is finding an efficient way to perform architecture search in an extremely large or even unlimited search space. To address this challenge, the thesis proposes a Neural Search-space Evolution (NSE) scheme that enables efficient and effective architecture search in large-scale search spaces. The second challenge is to improve the efficiency of self-supervised learning for model pretraining. To address this challenge, the thesis proposes a combinatorial patches approach that significantly improves the efficiency of self-supervised learning. The third challenge is to develop an efficient and versatile multitask model that can leverage the benefits of large-scale multitask training. To address this challenge, the thesis proposes a Unified model for Human-Centric Perceptions (UniHCP) as a simple and scalable solution for a human-centric perception system that unifies multiple human-centric tasks into a neat, efficient, and scalable model. The results of this thesis demonstrate the effectiveness of the proposed methods in improving the practicality and performance of neural network design and training. The NSE scheme, combinatorial patches approach, and UniHCP have been tested on a broad range of datasets, tasks, and settings, yielding impressive results. These findings affirm the efficacy of the proposed methods in enhancing the efficiency of the design and training process of neural networks
    • …
    corecore