1,151 research outputs found

    GEODYN programmer's guide, volume 2, part 2

    Get PDF
    A computer program for executive control routine for orbit integration of artificial satellites is presented. At the beginning of each arc, the program initiates required constants as well as the variational partials at epoch. If epoch needs to be reset to a previous time, the program negates the stepsize, and calls for integration backward to the desired time. After backward integration is completed, the program resets the stepsize to the proper positive quantity

    Calreticulin and integrin alpha dissociation induces anti-inflammatory programming in animal models of inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a chronic intestinal inflammatory condition initiated by integrins-mediated leukocyte adhesion to the activated colonic microvascular endothelium. Calreticulin (CRT), a calcium-binding chaperone, is known as a partner in the activation of integrin α subunits (ITGAs). The relationship between their interaction and the pathogenesis of IBD is largely unknown. Here we show that a small molecule, orally active ER-464195-01, inhibits the CRT binding to ITGAs, which suppresses the adhesiveness of both T cells and neutrophils. Transcriptome analysis on colon samples from dextran sodium sulfate-induced colitis mice reveals that the increased expression of pro-inflammatory genes is downregulated by ER-464195-01. Its prophylactic and therapeutic administration to IBD mouse models ameliorates the severity of their diseases. We propose that leukocytes infiltration via the binding of CRT to ITGAs is necessary for the onset and development of the colitis and the inhibition of this interaction may be a novel therapeutic strategy for the treatment of IBD

    Calculation of wing response to gusts and blast waves with vortex lift effect

    Get PDF
    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves

    Preliminary Analysis of an Aquatic Toxicity Dataset and Assessment of QSAR Models for Narcosis

    Get PDF
    The purpose of the analyses presented in this report was to contribute to an evaluation of the possibility of using QSAR predictions for regulatory purposes. To this end QSAR predictions were compared with SIDS test data. Furthermore, the models were also assessed according to the extent to which they meet OECD principles for QSAR validation. The comparisons are not intended to be scientific validations, because the SIDS test chemicals were not selected to ensure that they are sufficiently representative for the entire applicability domain of the individual models. Nevertheless, many of the analyses presented form the basis for scientific validationJRC.I.3-Toxicology and chemical substance

    Structured representation for requirements and specifications

    Get PDF
    This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems suitable for Fly-By-Wire Applications, Task Assignment 2. Task 2 is associated with a formal representation of requirements and specifications. In particular, this document contains results associated with the development of a Wide-Spectrum Requirements Specification Language (WSRSL) that can be used to express system requirements and specifications in both stylized and formal forms. Included with this development are prototype tools to support the specification language. In addition a preliminary requirements specification methodology based on the WSRSL has been developed. Lastly, the methodology has been applied to an Advanced Subsonic Civil Transport Flight Control System

    The Relation of the Native Forest Cover to the Physical and Chemical Nature of the Soils of the Mammoth Cave National Park Area

    Get PDF
    This study was undertaken for the purpose of determining the relation existing between the native forest cover and the chemical and physical properties of the soils of the Mammoth Cave National Park area. The study was suggested by certain references in the literature to a correlation existing between forest cover and the geological, chemical and physical nature of soils of this area. The recent attempt at reforestation in the Mammoth Cave National Park area renders such a study timely, and it is believed that the results reported in this paper will materially aid the Mammoth Cave National Park Commission and other interested agencies to more judiciously plan for reforestation in this area. Much additional study of this subject is needed, however, before final conclusion can be drawn

    Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

    Get PDF

    Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Get PDF
    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data

    Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 2: Programmer's manual

    Get PDF
    The six month effort was responsible for the development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs. The program NOMNAL targets a transfer trajectory from earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty
    corecore