17,946 research outputs found

    Compensated isocurvature perturbations in the curvaton model

    Full text link
    Primordial fluctuations in the relative number densities of particles, or isocurvature perturbations, are generally well constrained by cosmic microwave background (CMB) data. A less probed mode is the compensated isocurvature perturbation (CIP), a fluctuation in the relative number densities of cold dark matter and baryons. In the curvaton model, a subdominant field during inflation later sets the primordial curvature fluctuation ζ\zeta. In some curvaton-decay scenarios, the baryon and cold dark matter isocurvature fluctuations nearly cancel, leaving a large CIP correlated with ζ\zeta. This correlation can be used to probe these CIPs more sensitively than the uncorrelated CIPs considered in past work, essentially by measuring the squeezed bispectrum of the CMB for triangles whose shortest side is limited by the sound horizon. Here, the sensitivity of existing and future CMB experiments to correlated CIPs is assessed, with an eye towards testing specific curvaton-decay scenarios. The planned CMB Stage 4 experiment could detect the largest CIPs attainable in curvaton scenarios with more than 3σ\sigma significance. The significance could improve if small-scale CMB polarization foregrounds can be effectively subtracted. As a result, future CMB observations could discriminate between some curvaton-decay scenarios in which baryon number and dark matter are produced during different epochs relative to curvaton decay. Independent of the specific motivation for the origin of a correlated CIP perturbation, cross-correlation of CIP reconstructions with the primary CMB can improve the signal-to-noise ratio of a CIP detection. For fully correlated CIPs the improvement is a factor of \sim2-3.Comment: 20 pages, 8 figures, minor changes matching publicatio

    Do baryons trace dark matter in the early universe?

    Get PDF
    Baryon-density perturbations of large amplitude may exist if they are compensated by dark-matter perturbations so that the total density remains unchanged. Big-bang nucleosynthesis and galaxy clusters allow the amplitudes of these compensated isocurvature perturbations (CIPs) to be as large as 10\sim10%. CIPs will modulate the power spectrum of cosmic microwave background (CMB) fluctuations---those due to the usual adiabatic perturbations---as a function of position on the sky. This leads to correlations between different spherical-harmonic coefficients of the temperature/polarization map, and it induces B modes in the CMB polarization. Here, the magnitude of these effects is calculated and techniques to measure them are introduced. While a CIP of this amplitude can be probed on the largest scales with WMAP, forthcoming CMB experiments should improve the sensitivity to CIPs by at least an order of magnitude.Comment: 4 pages, 3 figures, updated with version published in Phys. Rev. Lett. Results unchanged. Added expanded discussion of how to disentangle compensated isocurvature perturbations from weak lensing of the CMB. Expanded discussion of early universe motivation for compensated isocurvature perturbation

    Lensing Bias to CMB Measurements of Compensated Isocurvature Perturbations

    Full text link
    Compensated isocurvature perturbations (CIPs) are modes in which the baryon and dark matter density fluctuations cancel. They arise in the curvaton scenario as well as some models of baryogenesis. While they leave no observable effects on the cosmic microwave background (CMB) at linear order, they do spatially modulate two-point CMB statistics and can be reconstructed in a manner similar to gravitational lensing. Due to the similarity between the effects of CMB lensing and CIPs, lensing contributes nearly Gaussian random noise to the CIP estimator that approximately doubles the reconstruction noise power. Additionally, the cross correlation between lensing and the integrated Sachs-Wolfe (ISW) effect generates a correlation between the CIP estimator and the temperature field even in the absence of a correlated CIP signal. For cosmic-variance limited temperature measurements out to multipoles l2500l \leq 2500, subtracting a fixed lensing bias degrades the detection threshold for CIPs by a factor of 1.31.3, whether or not they are correlated with the adiabatic mode.Comment: 10 pages, 12 figures; one of the authors Chen He Heinrich was previously known as Chen H

    Small sample properties of CIPS panel unit root test under conditional and unconditional heteroscedasticity

    Get PDF
    This paper used Monte Carlo simulations to analyze the small sample properties of cross-sectionally augmented panel unit root test (CIPS test). We considered situations involving two types of time-series heteroskedasticity (unconditional and ARCH) in the unobserved common factor and idiosyncratic error term. We found that the CIPS test could be extremely robust versus the two types of heteroskedasticity in the unobserved common factor. However, we found under-size distortion in the case of unconditional heteroskedasticity in the idiosyncratic error term, and conversely, over-size distortion in the case of ARCH. Furthermore, we observed a tendency for its over-size distortion to moderate with low volatility persistence in the ARCH process and exaggerate with high volatility persistence.panel unit root test; CIPS test; heteroskedasticity; cross-section dependence

    Testing for unit roots in three-dimensional heterogeneous panels in the presence of cross-sectional dependence

    Get PDF
    This paper extends the cross-sectionally augmented IPS (CIPS) test of Pesaran (2006) to a three-dimensional (3D) panel. This 3D-CIPS test is correctly sized in the presence of cross-sectional dependency. Comparing its power performance to that of a bootstrapped IPS (BIPS) test, we find that the BIPS test invariably dominates, although for high levels of cross-sectional dependency the 3D-CIPS test can out-perform the BIPS test.Heterogeneous dynamic panels ; Monte Carlo ; unit roots ; cross-sectional dependence

    Baryons still trace dark matter: probing CMB lensing maps for hidden isocurvature

    Full text link
    Compensated isocurvature perturbations (CIPs) are primordial fluctuations that balance baryon and dark-matter isocurvature to leave the total matter density unperturbed. The effects of CIPs on the cosmic microwave background (CMB) anisotropies are similar to those produced by weak lensing of the CMB: smoothing of the power spectrum, and generation of non-Gaussian features. Previous work considered the CIP effects on the CMB power-spectrum but neglected to include the CIP effects on estimates of the lensing potential power spectrum (though its contribution to the non-Gaussian, connected, part of the CMB trispectrum). Here, the CIP contribution to the standard estimator for the lensing potential power-spectrum is derived, and along with the CIP contributions to the CMB power-spectrum, Planck data is used to place limits on the root-mean-square CIP fluctuations on CMB scales, Δrms2(RCMB)\Delta_{\rm rms}^2(R_{\rm CMB}). The resulting constraint of Δrms2(RCMB)<4.3×103\Delta_{\rm rms}^2(R_{\rm CMB}) < 4.3 \times 10^{-3} using this new technique improves on past work by a factor of 3\sim 3. We find that for Planck data our constraints almost reach the sensitivity of the optimal CIP estimator. The method presented here is currently the most sensitive probe of the amplitude of a scale-invariant CIP power spectrum placing an upper limit of ACIP<0.017A_{\rm CIP}< 0.017 at 95% CL. Future measurements of the large-scale CMB lensing potential power spectrum could probe CIP amplitudes as low as Δrms2(RCMB)=8×105\Delta_{\rm rms}^2(R_{\rm CMB}) = 8 \times 10^{-5} (ACIP=3.2×104A_{\rm CIP} = 3.2 \times 10^{-4}).Comment: 24 pages, 9 figures; comments welcome; v2 references correcte
    corecore