745,014 research outputs found
Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White x Meishan pigs.
Data from the F2 generation of a Large White (LW) 5 Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for leg and gait scores, osteochondrosis and physis scores. Legs, feet and gait score were assessed in 308 F2 animals at 85 (± 5) kg and osteochondrosis and physis scores were recorded for the right foreleg after slaughter. A genome scan was performed using 111 genetic markers chosen to span the genome that were genotyped on the F2 animals and their F1 parents and purebred grandparents. A QTL on chromosome 1 affecting gait score was significant at the genome-wide significance level. Additional QTL significant at the chromosome-wide 5% threshold level (approx. equivalent to the genome-wide suggestive level) were detected on chromosome 1 for front feet and back legs scores, on chromosome 13 for front legs and front feet scores, on chromosome 14 for front legs, front feet and back legs scores and on chromosome 15 for back feet score. None of the QTL for osteochondrosis score exceeded the chromosome-wide suggestive level, but one chromosome-wide QTL for physis score was found on chromosome 7. On chromosome 1, gait and front feet scores mapped to the middle of the chromosome and showed additive effects in favour of the LW alleles and no dominance effects. The QTL for back legs score mapped to the distal end of the chromosome and showed a dominant effect and no additive effect. On chromosomes 14 and 15, the LW allele was again superior to the MS allele. On chromosome 13, there were both additive and dominance effects in favour of the MS allele. The MS alleles on chromosome 13 may have potential for introgression into a commercial LW population. The other putative QTLs identified may have value in marker-assisted selection in LW or MS-synthetic populations
The architecture of chicken chromosome territories changes during differentiation
BACKGROUND:
Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown.
RESULTS:
We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions.
CONCLUSIONS:
Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes
Large chromosomal structural variations between M. acuminata and M balbisiana and their consequences on chromosome recombination and segregation in a AAAB polyploidy context
Many banana cultivars are triploid interspecific hybrids between M. acuminata (Genome A, 2n=22) and M. balbisiana (Genome B, 2n=22). They included the important group of Plantain cooking bananas classified as AAB. We compared the global chromosome structure of A and B genomes through the construction of a M. balbisiana genetic map and its comparison with the M. acuminata reference sequence assembly. We identified a large reciprocal translocation involving chromosome 1 and 3 and a large inversion on chromosome 5. We analyzed the A/B chromosomes composition of plantain cultivars revealing a few chromosome segments with AAA composition and one entire chromosome with ABB composition instead of the supposed general 'AAB' composition. We analyzed the A/B chromosomes composition of a progeny from a 'AAAB' tetraploid plantain derived breeding accession. We observed recombination between A and B genomes along most of the chromosomes. A few exceptions were observed with no recombination in the inverted segment between A and B on chromosome 5 and a reduced recombination near the translocated breakpoints on chromosome 1 and 3. We also observed a very important number of aneuploids in the progeny (62%) with 6% involving chromosome 5 and 46% involving chromosome 1 and 3, the three chromosomes that differed in their global structure between A and B genomes. Implication of these results on the origin of banana cultivars and on breeding of banana allopolyploids will be discussed
A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11
Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11 +/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11 −/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination
Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A
Background: Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis.
Methodology/Principal Findings: We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC based or 583 LTC based contigs. Conclusions/Significance: The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A
Principles of meiotic chromosome assembly revealed in S. cerevisiae
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process
A family case of fertile human 45,X,psu dic(15;Y) males
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family
Chromosome Oscillations in Mitosis
Successful cell division requires a tight regulation of chromosome motion via
the activity of molecular motors. Many of the key players at the origin of the
forces generating the movement have been identified, but their spatial and
temporal organization remains elusive. The protein complex Kinetochore on the
chromosome associates with microtubules emanating from one of the spindle poles
and drives the chromosome toward the pole. Chromokinesin motors on the
chromosome arms also interact with microtubules, ejecting the chromosome away
from the pole. In animal cells, a monooriented chromosome (associated to a
single pole) periodically switches between phases of poleward and away from the
pole movement[, a behavior tentatively explained so far by the existence of a
complex switching mechanism within the kinetochore itself. Here we show that
the interplay between the morphology of the mitotic spindle and the collective
kinetics of chromokinesins can account for the highly non-linear periodic
chromosome motion. Our analysis provides a natural explanation for the origin
of chromosome directional instability and for the mechanism by which
chromosomes feel their position in space.Comment: http://hogarth.pct.espci.fr/~pierre
A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones
The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse
- …
