670 research outputs found

    Maturity-Aware Active Learning for Semantic Segmentation with Hierarchically-Adaptive Sample Assessment

    Full text link
    Active Learning (AL) for semantic segmentation is challenging due to heavy class imbalance and different ways of defining "sample" (pixels, areas, etc.), leaving the interpretation of the data distribution ambiguous. We propose "Maturity-Aware Distribution Breakdown-based Active Learning'' (MADBAL), an AL method that benefits from a hierarchical approach to define a multiview data distribution, which takes into account the different "sample" definitions jointly, hence able to select the most impactful segmentation pixels with comprehensive understanding. MADBAL also features a novel uncertainty formulation, where AL supporting modules are included to sense the features' maturity whose weighted influence continuously contributes to the uncertainty detection. In this way, MADBAL makes significant performance leaps even in the early AL stage, hence reducing the training burden significantly. It outperforms state-of-the-art methods on Cityscapes and PASCAL VOC datasets as verified in our extensive experiments.Comment: Accepted to the 34th British Machine Vision Conference (BMVC 2023

    EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation

    Full text link
    Active learning algorithms have become increasingly popular for training models with limited data. However, selecting data for annotation remains a challenging problem due to the limited information available on unseen data. To address this issue, we propose EdgeAL, which utilizes the edge information of unseen images as {\it a priori} information for measuring uncertainty. The uncertainty is quantified by analyzing the divergence and entropy in model predictions across edges. This measure is then used to select superpixels for annotation. We demonstrate the effectiveness of EdgeAL on multi-class Optical Coherence Tomography (OCT) segmentation tasks, where we achieved a 99% dice score while reducing the annotation label cost to 12%, 2.3%, and 3%, respectively, on three publicly available datasets (Duke, AROI, and UMN). The source code is available at \url{https://github.com/Mak-Ta-Reque/EdgeAL}Comment: This version of the contribution has been submitted in miccai202

    Active Learning for Semantic Segmentation with Multi-class Label Query

    Full text link
    This paper proposes a new active learning method for semantic segmentation. The core of our method lies in a new annotation query design. It samples informative local image regions (e.g., superpixels), and for each of such regions, asks an oracle for a multi-hot vector indicating all classes existing in the region. This multi-class labeling strategy is substantially more efficient than existing ones like segmentation, polygon, and even dominant class labeling in terms of annotation time per click. However, it introduces the class ambiguity issue in training since it assigns partial labels (i.e., a set of candidate classes) to individual pixels. We thus propose a new algorithm for learning semantic segmentation while disambiguating the partial labels in two stages. In the first stage, it trains a segmentation model directly with the partial labels through two new loss functions motivated by partial label learning and multiple instance learning. In the second stage, it disambiguates the partial labels by generating pixel-wise pseudo labels, which are used for supervised learning of the model. Equipped with a new acquisition function dedicated to the multi-class labeling, our method outperformed previous work on Cityscapes and PASCAL VOC 2012 while spending less annotation cost

    Adaptive Superpixel for Active Learning in Semantic Segmentation

    Full text link
    Learning semantic segmentation requires pixel-wise annotations, which can be time-consuming and expensive. To reduce the annotation cost, we propose a superpixel-based active learning (AL) framework, which collects a dominant label per superpixel instead. To be specific, it consists of adaptive superpixel and sieving mechanisms, fully dedicated to AL. At each round of AL, we adaptively merge neighboring pixels of similar learned features into superpixels. We then query a selected subset of these superpixels using an acquisition function assuming no uniform superpixel size. This approach is more efficient than existing methods, which rely only on innate features such as RGB color and assume uniform superpixel sizes. Obtaining a dominant label per superpixel drastically reduces annotators' burden as it requires fewer clicks. However, it inevitably introduces noisy annotations due to mismatches between superpixel and ground truth segmentation. To address this issue, we further devise a sieving mechanism that identifies and excludes potentially noisy annotations from learning. Our experiments on both Cityscapes and PASCAL VOC datasets demonstrate the efficacy of adaptive superpixel and sieving mechanisms
    • …
    corecore