9,087,184 research outputs found
Comparative Analysis of Nuclear Transfer Embryo Derived Mouse Embryonic Stem Cells. Part I: Cellular characterization
Embryonic stem cells derived from nuclear transfer embryos (ntESCs) are particularly valuable for regenerative medicine, as they are a patient-specific and histocompatible cell source for the treatment of varying diseases.
However, currently, little is known about their cellular and molecular profile. In the present study, in a mouse model different donor cell-derived ntESCs from various genetic backgrounds were compared with reference
ESCs and analyzed comprehensively at the cellular level. A number of pluripotency marker genes were compared
by flow cytometry and immunocytochemistry analysis. Significant differences at the protein level were
observed for POU5F1, SOX2, FGF4, NANOG, and SSEA-1. However, such differences had no effect on in vitro
cell differentiation and cell fate: derivatives of the three germ layers were detected in all ntESC lines. The neural
and cardiac in vitro differentiation revealed minor differences between the cell lines, both at the mRNA and
protein level. Karyotype analyses and cell growth studies did not reveal any significant variations. Despite some
differences observed, the present study revealed that ntESC lines had similar differentiation competences
compared to other ESCs. The results indicate that the observed differences may be related to the genotype rather
than to the nuclear transfer technology
Moduli space actions on the Hochschild Co-Chains of a Frobenius algebra I: Cell Operads
This is the first of two papers in which we prove that a cell model of the
moduli space of curves with marked points and tangent vectors at the marked
points acts on the Hochschild co--chains of a Frobenius algebra. We also prove
that a there is dg--PROP action of a version of Sullivan Chord diagrams which
acts on the normalized Hochschild co-chains of a Frobenius algebra. These
actions lift to operadic correlation functions on the co--cycles. In
particular, the PROP action gives an action on the homology of a loop space of
a compact simply--connected manifold.
In this first part, we set up the topological operads/PROPs and their cell
models. The main theorems of this part are that there is a cell model operad
for the moduli space of genus curves with punctures and a tangent
vector at each of these punctures and that there exists a CW complex whose
chains are isomorphic to a certain type of Sullivan Chord diagrams and that
they form a PROP. Furthermore there exist weak versions of these structures on
the topological level which all lie inside an all encompassing cyclic
(rational) operad.Comment: 50 pages, 7 figures. Newer version has minor changes. Some material
shifted. Typos and small things correcte
Memory NK cell features exploitable in anticancer immunotherapy
Besides their innate ability to rapidly produce effector cytokines and kill virus-infected or transformed cells, natural killer (NK) cells display a strong capability to adapt to environmental modifications and to differentiate into long-lived, hyperfunctional populations, dubbed memory or memory-like NK cells. Despite significant progress in the field of NK cell-based immunotherapies, some factors including their short life span and the occurrence of a tumor-dependent functional exhaustion have limited their clinical efficacy so that strategies aimed at overcoming these limitations represent one of the main current challenges in the field. In this scenario, the exploitation of NK cell memory may have a considerable potential. This article summarizes recent evidence in the literature on the peculiar features that render memory NK cells an attractive tool for antitumor immunotherapy, including their long-term survival and in vivo persistence, the resistance to tumor-dependent immunosuppressive microenvironment, the amplified functional responses to IgG-opsonized tumor cells, and in vitro expansion capability. Along with highlighting these issues, we speculate that memory NK cell-based adoptive immunotherapy settings would greatly take advantage from the combination with tumor-targeting therapeutic antibodies (mAbs), as a strategy to fully unleash their clinical efficacy
Blood Cell Classification Using the Hough Transform and Convolutional Neural Networks
https://doi.org/10.1007/978-3-319-77712-2_62The detection of red blood cells in blood samples can be crucial for the disease detection in its early stages. The use of image
processing techniques can accelerate and improve the effectiveness and efficiency of this detection. In this work, the use of the Circle Hough transform for cell detection and artificial neural networks for their identification as a red blood cell is proposed. Specifically, the application of neural networks (MLP) as a standard classification technique with (MLP) is compared with new proposals related to deep learning such as convolutional neural networks (CNNs). The different experiments carried out reveal the high classification ratio and show promising results after the application of the CNNs.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Specifying sickle cell disease interventions: A study protocol of the Sickle Cell Disease Implementation Consortium (SCDIC)
Abstract Background Sickle cell disease (SCD) is an inherited blood disorder that results in a lifetime of anemia, severe pain, and end-organ damage that can lead to premature mortality. While the SCD field has made major medical advances, much needs to be done to improve the quality of care for people with SCD. This study capitalizes on the Sickle Cell Disease Implementation Consortium (SCDIC), a consortium of eight academic sites aiming to test implementation strategies that could lead to more accelerated application of the NHLBI guidelines for treating SCD. This report documents the process to support the consortium by specifying the interventions being developed. Methods This study consists of three steps. The Principal Investigator of each site and two site representatives who are knowledgeable of the intervention (e.g., study coordinator or the person delivering the intervention) will answer an online survey aiming to capture components of the interventions. This survey will be completed by the site representatives three times during the study: during the development of the interventions, after one year of the interventions being implemented, and at the end of this study (after 2 years). A site visit and semi-structured interview (Step 2) in the first year of the process will capture the context of the sites. Step 3 comprises of the development of a framework with the details of the multi-component SCDIC interventions at the sites. Discussion The outcome of this study, a framework of the SCDIC, will enable accurate replication and extension of published research, facilitating the translation of SCD studies to diverse populations and settings and allowing for theory testing of the effects of the intervention components across studies in different contexts and for different populations. Trial registration ClinicalTrial.Gov (#NCT03380351). Registered December 21, 2017
Identification and quantification of cell gas evolution in rigid polyurethane foams by novel GCMS methodology
Producción CientíficaThis paper presents a new methodology based on gas chromatography-mass spectrometry (GCMS) in order to separate and quantify the gases presented inside the cells of rigid polyurethane (RPU) foams. To demonstrate this novel methodology, the gas composition along more than three years of aging is herein determined for two samples: a reference foam and foam with 1.5 wt% of talc. The GCMS method was applied, on one hand, for the accurate determination of C5H10 and CO2 cell gases used as blowing agents and, on the other hand, for N2 and O2 air gases that diffuse rapidly from the surrounding environment into foam cells. GCMS results showed that CO2 leaves foam after 2.5 month (from 21% to 0.03% for reference foam and from 17% to 0.03% for foam with 1.5% talc). C5H10 deviates during 3.5 months (from 28% up to 39% for reference foam and from 29% up to 36% for foam with talc), then it starts to leave the foam and after 3.5 year its content is 13% for reference and 10% for foam with talc. Air diffuses inside the cells faster for one year (from 51% up to 79% for reference and from 54% up to 81% for foam with talc) and then more slowly for 3.5 years (reaching 86% for reference and 90% for foam with talc). Thus, the fast and simple presented methodology provides valuable information to understand the long-term thermal conductivity of the RPU foams.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grants MAT2015-69234-R and RTC-2016-5285-5)Junta de Castilla y Leon (grant VA275P18)Agencia austriaca para la promoción de la investigación (grant 850697
Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level
Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial-and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs. © 2011 Mary Ann Liebert, Inc.published_or_final_versio
Developmental definition of MSCs: New insights into pending questions
Mesenchymal stem cells (MSCs) are a rare heterogeneous population of multipotent cells that can be isolated from many different adult and fetal tissues. They exhibit the capacity to give rise to cells of multiple lineages and are defined by their phenotype and functional properties, such as spindle-shaped morphology, adherence to plastic, immune response modulation capacity, and multilineage differentiation potential. Accordingly, MSCs have a wide range of promising applications in the treatment of autoimmune diseases, tissue repair, and regeneration. Recent studies have shed some light on the exact identity and native distribution of MSCs, whereas controversial results are still being reported, indicating the need for further review on their definition and origin. In this article, we summarize the important progress and describe some of our own relevant work on the developmental definition of MSCs. © 2011 Mary Ann Liebert, Inc.published_or_final_versio
Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs
The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity
Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.
The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website
- …
