513,702 research outputs found
Recommended from our members
Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene.
A cDNA clone encoding a portion of Drosophila nuclear lamins Dm1 and Dm2 has been identified by screening a lambda-gt11 cDNA expression library using Drosophila lamin-specific monoclonal antibodies. Two different developmentally regulated mRNA species were identified by Northern blot analysis using the initial cDNA as a probe, and full-length cDNA clones, apparently corresponding to each message, have been isolated. In vitro transcription of both full-length cDNA clones in a pT7 transcription vector followed by in vitro translation in wheat germ lysate suggests that both clones encode lamin Dm0, the polypeptide precursor of lamins Dm1 and Dm2. Nucleotide sequence analyses confirm the impression that both cDNA clones code for the identical polypeptide, which is highly homologous with human lamins A and C as well as with mammalian intermediate filament proteins. The two clones differ in their 3'-untranslated regions. In situ hybridization of lamin cDNA clones to Drosophila polytene chromosomes shows only a single locus of hybridization at or near position 25F on the left arm of chromosome 2. Southern blot analyses of genomic DNA are consistent with the notion that a single or only a few highly similar genes encoding Drosophila nuclear lamin Dm0 exist in the genome
Cloning of terminal transferase cDNA by antibody screening
A cDNA library was prepared from a terminal deoxynucleotidyltransferase-containing thymoma in the phage vector λgt11. By screening plaques with anti-terminal transferase antibody, positive clones were identified of which some had β-galactosidase-cDNA fusion proteins identifiable after electrophoretic fractionation by immunoblotting with anti-terminal transferase antibody. The predominant class of cross-hybridizing clones was determined to represent cDNA for terminal transferase by showing that one representative clone hybridized to a 2200-nucleotide mRNA in close-matched enzyme-positive but not to enzyme-negative cells and that the cDNA selected a mRNA that translated to give a protein of the size and antigenic characteristics of terminal transferase. Only a small amount of genomic DNA hybridized to the longest available clone, indicating that the sequence is virtually unique in the mouse genome
A microfluidic processor for gene expression profiling of single human embryonic stem cells
The gene expression of human embryonic stem cells (hESC) is a critical aspect for understanding the normal and pathological development of human cells and tissues. Current bulk gene expression assays rely on RNA extracted from cell and tissue samples with various degree of cellular heterogeneity. These cell population averaging data are difficult to interpret, especially for the purpose of understanding the regulatory relationship of genes in the earliest phases of development and differentiation of individual cells. Here, we report a microfluidic approach that can extract total mRNA from individual single-cells and synthesize cDNA on the same device with high mRNA-to-cDNA efficiency. This feature makes large-scale single-cell gene expression profiling possible. Using this microfluidic device, we measured the absolute numbers of mRNA molecules of three genes (B2M, Nodal and Fzd4) in a single hESC. Our results indicate that gene expression data measured from cDNA of a cell population is not a good representation of the expression levels in individual single cells. Within the G0/G1 phase pluripotent hESC population, some individual cells did not express all of the 3 interrogated genes in detectable levels. Consequently, the relative expression levels, which are broadly used in gene expression studies, are very different between measurements from population cDNA and single-cell cDNA. The results underscore the importance of discrete single-cell analysis, and the advantages of a microfluidic approach in stem cell gene expression studies
The isolation of differentially expressed cDNA clones from the filarial nematode <i>Brugia pahangi</i>
A cDNA library constructed from 3 day post-infective L3 of the filarial nematode Brugia pahangi was screened by differential hybridization with cDNA probes prepared from different life-cycle stages. Five cDNA clones hybridizing selectively to the mosquito-derived L3 probe were isolated and characterized. Northern blot analysis of 4 of the clones confirmed that each was most highly expressed in the mosquito-derived L3. The expression of each mRNA during parasite development in the mosquito vector was investigated using RT-PCR, and all were shown to be abundant in the immature L3. Four of the 5 cDNAs cloned coded for structural proteins: 2 cuticular collagens, and the muscle proteins tropomyosin and troponin. Further studies on troponin using an antiserum raised to the recombinant protein demonstrated that the protein, unlike the mRNA, was present in all life-cycle stages examined, while immunogold labelling demonstrated that it was localized to the muscle blocks
Identification of a non-mammalian leptin-like gene:characterization and expression in the tiger salamander (Ambystoma tigrinum)
Leptin is well established as a multifunctional cytokine in mammals. However, little is known about the evolution of the leptin gene in other vertebrates. A recently published set of ESTs from the tiger salamander (Ambystoma tigrinum) contains a sequence sharing 56% nucleotide sequence identity with the human leptin cDNA. To confirm that the EST is naturally expressed in the salamander, a 409 bp cDNA was amplified by RT-PCR of salamander testis and stomach mRNAs. The coding sequence of the cDNA is predicted to encode 169 amino acids, and the mature peptide to consist of 146 residues, as in mammals. Although the overall amino acid identity with mammalian leptins is only 29%, the salamander and mammalian peptides share common structural features. An intron was identified between coding exons providing evidence that the sequence is present in the salamander genome. Phylogenetic analysis showed a rate of molecular divergence consistent with the accepted view of vertebrate evolution. The pattern of tissue expression of the leptin-like cDNA differed between metamorphosed adult individuals of different sizes suggesting possible developmental regulation. Expression was most prominent in the skin and testis, but was also detected in tissues in which leptin mRNA is present in mammals, including the fat body, stomach, and muscle. The characterization of a salamander leptin-like gene provides a basis for understanding how the structure and functions of leptin have altered during the evolution of tetrapod vertebrates
A new approach to understanding T cell development: the isolation and characterization of immature CD4-, CD8-, CD3- T cell cDNAs by subtraction cloning
During T cell development in the mammalian thymus, immature T cells are observed that lack the cell surface markers CD4, CD8, and CD3. A subtracted cDNA library was constructed to isolate cDNAs that are specific for these immature T cells. Tissue-specific expression of 97 individual cDNAs were examined using different cell types by Northern blot analysis, and six cDNAs were analyzed by reverse transcriptase (RT) polymerase chain reaction (PCR) detection of RNA. Approximately 50% of the clones could not be detected on Northern blots, and 40% of the clones were expressed by at least one other cell-type including monocytes, mature T cells, and B cells. Eight cDNA clones appear to be specific for the CD4-, CD8-, CD3- T cell line, used to construct the library, as determined by Northern blot analysis. In addition, 330 cDNA clones were subjected to partial automated DNA sequence determination. Database searches, with both nucleotide and protein translations, revealed cDNAs that exhibit interesting similarities to human cell-cycle gene 1, platelet-derived growth factor receptor, c-fms oncogene (CSF-1) receptor, and members of the immunoglobulin gene superfamily. This approach of employing subtraction coupled with large scale partial cDNA sequence determination can be useful to identify genes that may be involved in early T cell growth, cellular recognition or differentiation
Software and methods for oligonucleotide and cDNA array data analysis.
Two HTML-based programs were developed to analyze and filter gene-expression data: 'Bullfrog' for Affymetrix oligonucleotide arrays and 'Spot' for custom cDNA arrays. The programs provide intuitive data-filtering tools through an easy-to-use interface. A background subtraction and normalization program for cDNA arrays was also built that provides an informative summary report with data-quality assessments. These programs are freeware to aid in the analysis of gene-expression results and facilitate the search for genes responsible for interesting biological processes and phenotypes
Accurate RT-qPCR gene expression analysis on cell culture lysates
Gene expression quantification on cultured cells using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) typically involves an RNA purification step that limits sample processing throughput and precludes parallel analysis of large numbers of samples. An approach in which cDNA synthesis is carried out on crude cell lysates instead of on purified RNA samples can offer a fast and straightforward alternative. Here, we evaluate such an approach, benchmarking Ambion's Cells-to-CT kit with the classic workflow of RNA purification and cDNA synthesis, and demonstrate its good accuracy and superior sensitivity
- …
