236 research outputs found

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-two research projects and a list of publications.Sanders, a Lockheed-Martin Corporation Contract BZ4962U.S. Army Research Laboratory Contract DAAL01-96-2-0001U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-96-1-0930National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Science Foundation Graduate Research FellowshipAT&T Bell Laboratories Graduate Research FellowshipU.S. Army Research Laboratory Contract DAAL01-96-2-0002National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Analog Network Coding for Multi-User Spread-Spectrum Communication Systems

    Full text link
    This work presents another look at an analog network coding scheme for multi-user spread-spectrum communication systems. Our proposed system combines coding and cooperation between a relay and users to boost the throughput and to exploit interference. To this end, each pair of users, A\mathcal{A} and B\mathcal{B}, that communicate with each other via a relay R\mathcal{R} shares the same spreading code. The relay has two roles, it synchronizes network transmissions and it broadcasts the combined signals received from users. From user B\mathcal{B}'s point of view, the signal is decoded, and then, the data transmitted by user A\mathcal{A} is recovered by subtracting user B\mathcal{B}'s own data. We derive the analytical performance of this system for an additive white Gaussian noise channel with the presence of multi-user interference, and we confirm its accuracy by simulation.Comment: 6 pages, 2 figures, to appear at IEEE WCNC'1

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty research projects and a list of publications.Lockheed Sanders, Inc. Contract BZ4962U.S. Army Research Laboratory Grant QK-8819U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834U.S. Navy - Office of Naval Research Grant N00014-96-1-0930U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072National Science Foundation Graduate Research Fellowship Grant MIP 95-02885Lockheed Sanders, Inc. Grant N00014-93-1-0686National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/ARL Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks

    Get PDF
    This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection. --Abstract, page iv

    Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks

    Get PDF
    This review paper tries to assess the spectral-efficient (SE) and energy-efficient (EE) performance of underwater acoustic multiple-input multiple-output (UWA/MIMO) networks. Since UWA/MIMO networks define the cutting-edge communications platform of the future’s undersea IoT and M2M networks, the factors that influence their SE and EE performance are thoroughly examined in this paper.The contribution of this paper is three-fold. First, the performance of UWA/MIMO networks is studied with regard to appropriate transmission, SE and EE metrics. The SE and EE performance of these networks drastically depends on the used frequency band, the transmitted power, the MIMO scheme properties, the power consumption profile of the deployed UWA system equipment and the topological characteristics of MIMO configurations. In order to achieve the transition from traditional UWA single-input single-output (UWA/SISO) networks to UWA/MIMO networks, a new singular value decomposition MIMO (SVD/MIMO) module, which also permits the theoretical computation of the aforementioned transmission, SE and EE metrics in UWA networks, is first presented. Second, based on the aforementioned transmission, SE and EE metrics, a SE/EE trade-off relation is proposed in order to investigate the combined SE and EE performance of UWA/MIMO networks. On the basis of this SE/EE trade-off relation, it is first revealed that today’s UWA system equipment cannot support the further IoT broadband exploitation with satisfactory EE performance. Third, the concepts of multi-hop UWA communications and standard UWA topologies are outlined and promoted so that further SE and EE improvement can concurrently occur. These concepts are quantitatively validated by the SE and EE metrics as well as the SE/EE trade-off curves.Based on the findings of this paper, suitable transmitted power levels and better design of UWA/MIMO configurations are promoted so that: (i) SE and EE requirements can be satisfied at will; and (ii) EE-oriented high-bitrate M2M communications network design can be established.Citation: Lazaropoulos, A. G. (2016). "Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks." Trends in Renewable Energy, 2(1), 13-50. DOI: 10.17737/tre.2016.2.1.001

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-one research projects and a list of publications.U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc. Contract P.O. BY5561U.S. Air Force - Office of Scientific Research Grant AFOSR 91-0034National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834MIT-WHOI Joint Graduate Program in Oceanographic EngineeringAT&T Laboratories Doctoral Support ProgramDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489Lockheed Sanders/U.S. Navy - Office of Naval Research Grant N00014-91-C-0125U.S. Navy - Office of Naval Research Grant N00014-89-J-1489National Science Foundation Grant MIP 95-02885Defense Advanced Research Projects Agency/U.S. Navy Contract DAAH04-95-1-0473U.S. Navy - Office of Naval Research Grant N00014-91-J-1628University of California/Scripps Institute of Oceanography Contract 1003-73-5

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on sixteen research projects and a list of publications.Bose CorporationMIT-Woods Hole Oceanographic Institution Joint Graduate Program in Oceanographic EngineeringAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral Support ProgramAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation FellowshipMaryland Procurement Office Contract MDA904-93-C-4180U.S. Navy - Office of Naval Research Grant N00014-91-J-162

    DSP implementation of OFDM acoustic modem

    Get PDF
    The success of multicarrier modulation in the form of OFDM in radio channels illuminates a path one could take towards high-rate underwater acoustic communications,and recently there are intensive investigations on underwater OFDM. Processing power has increased to a point where orthogonal frequency division multiplexing (OFDM) has become feasible and economical. Since many wireless communication systems being developed use OFDM, it is a worthwhile research topic. Some examples of applications using OFDM include Digital subscriber line (DSL), Digital Audio Broadcasting (DAB),High definition television (HDTV) broadcasting, IEEE 802.11 (wireless networking standard).OFDM is a strong candidate and has been suggested or standardized in high speed communication systems. In this Thesis in first phase ,we analyzes the factor that affects the OFDM performance. The performance of OFDM was assessed by using computer simulations performed using Matlab7.2 .it was simulated under Additive white Gaussian noise (AWGN) ,Exponential Multipath channel and Carrier frequency offset conditions for different modulation schemes like binary phase shift keying (BPSK), Quadrature phase shift keying (QPSK),16 Quadrature amplitude modulation (16-QAM),64-Quadrature amplitude modulation(64-QAM)which are used for achieving high data rates.In second phase we implement the acoustic OFDM transmitter and receiver design of [4,5] on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations. Based on the workload analysis, we tune the algorithms and optimize the code to substantially reduce the synchronization time to 0.2 seconds and the processing time of one OFDM block to 2.7235 seconds on a DSP processor at 225 MHz. This experimentation provides guidelines on our future work to reduce the per-block processing time to be less than the block duration of 0.23 seconds for real time operations
    corecore