25,499 research outputs found
Essential gene pathways for glioblastoma stem cells: clinical implications for prevention of tumor recurrence.
Glioblastoma (World Health Organization/WHO grade IV) is the most common and most aggressive adult glial tumor. Patients with glioblastoma, despite being treated with gross total resection and post-operative radiation/chemotherapy, will almost always develop tumor recurrence. Glioblastoma stem cells (GSC), a minor subpopulation within the tumor mass, have been recently characterized as tumor-initiating cells and hypothesized to be responsible for post-treatment recurrence because of their enhanced radio-/chemo-resistant phenotype and ability to reconstitute tumors in mouse brains. Genome-wide expression profile analysis uncovered molecular properties of GSC distinct from their differentiated, proliferative progeny that comprise the majority of the tumor mass. In contrast to the hyperproliferative and hyperangiogenic phenotype of glioblastoma tumors, GSC possess neuroectodermal properties and express genes associated with neural stem cells, radial glial cells, and neural crest cells, as well as portray a migratory, quiescent, and undifferentiated phenotype. Thus, cell cycle-targeted radio-chemotherapy, which aims to kill fast-growing tumor cells, may not completely eliminate glioblastoma tumors. To prevent tumor recurrence, a strategy targeting essential gene pathways of GSC must be identified and incorporated into the standard treatment regimen. Identifying intrinsic and extrinsic cues by which GSC maintain stemness properties and sustain both tumorigenesis and anti-apoptotic features may provide new insights into potentially curative strategies for treating brain cancers
WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics
Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe
Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo.
BackgroundProstate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study.MethodsProstaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice.ResultsProstate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells.ConclusionHuman prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells
Key role of MEK/ERK pathway in sustaining tumorigenicity and in vitro radioresistance of embryonal rhabdomyosarcoma stem-like cell population
The identification of signaling pathways that affect the cancer stem-like phenotype may provide insights into therapeutic targets for combating embryonal rhabdomyosarcoma. The aim of this study was to investigate the role of the MEK/ERK pathway in controlling the cancer stem-like phenotype using a model of rhabdospheres derived from the embryonal rhabdomyosarcoma cell line (RD)
Clinical Implication of Targeting of Cancer Stem Cells
The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
Lipid storage and autophagy in melanoma cancer cells
Cancer stem cells (CSC) represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1) and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ). An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3) lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK) and Phospho-mammalian Target of Rapamycin (P-mTOR) were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology
Endothelial progenitor cells and burn injury - exploring the relationship.
Burn wounds result in varying degrees of soft tissue damage that are typically graded clinically. Recently a key participant in neovascularization, the endothelial progenitor cell, has been the subject of intense cardiovascular research to explore whether it can serve as a biomarker for vascular injury. In this review, we examine the identity of the endothelial progenitor cell as well as the evidence that support its role as a key responder after burn insult. While there is conflicting evidence with regards to the delta of endothelial progenitor cell mobilization and burn severity, it is clear that they play an important role in wound healing. Systematic and controlled studies are needed to clarify this relationship, and whether this population can serve as a biomarker for burn severity
Cancer Stem Cell Gene Profile as Predictor of Relapse in High Risk Stage II and Stage III, Radically Resected Colon Cancer Patients
Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies
Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans
Recommended from our members
Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells.
Radiotherapy (RT) is the major modality for control of glioblastoma multiforme (GBM), the most aggressive brain tumor in adults with poor prognosis and low patient survival rate. To improve the RT efficacy on GBM, the mechanism causing tumor adaptive radioresistance which leads to the failure of tumor control and lethal progression needs to be further elucidated. Here, we conducted a comparative analysis of RT-treated recurrent tumors versus primary counterparts in GBM patients, RT-treated orthotopic GBM tumors xenografts versus untreated tumors and radioresistant GBM cells versus wild type cells. The results reveal that activation of STAT3, a well-defined redox-sensitive transcriptional factor, is causally linked with GBM adaptive radioresistance. Database analysis also agrees with the worse prognosis in GBM patients due to the STAT3 expression-associated low RT responsiveness. However, although the radioresistant GBM cells can be resensitized by inhibition of STAT3, a fraction of radioresistant cells can still survive the RT combined with STAT3 inhibition or CRISPR/Cas9-mediated STAT3 knockout. A complementally enhanced activation of ERK1/2 by STAT3 inhibition is identified responsible for the survival of the remaining resistant tumor cells. Dual inhibition of ERK1/2 and STAT3 remarkably eliminates resistant GBM cells and inhibits tumor regrowth. These findings demonstrate a previously unknown feature ofSTAT3-mediated ERK1/2 regulation and an effective combination of two targets in resensitizing GBM to RT
- …
