4,214,271 research outputs found

    Spectroscopy of doubly charmed baryons: Ξcc+\Xi_{cc}^{+} and Ξcc++\Xi_{cc}^{++}

    Full text link
    Using the quark-diquark approximation in the framework of Buchm\" uller-Tye potential model, we investigate the spectroscopy of doubly charmed baryons: Ξcc++\Xi_{cc}^{++} and Ξcc+\Xi_{cc}^{+}. Our results include the masses, parameters of radial wave functions of states with the different excitations of both diquark and light quark-diquark system. We calculate the values of fine and hyperfine splittings of these levels and discuss some new features, connected to the identity of heavy quarks, in the dynamics of hadronic and radiative transitions between the states of these baryons.Comment: 10 pages, Latex file, 1 fig, corrected some typo

    Radiative decays of the doubly charmed baryons in chiral perturbation theory

    Full text link
    We have systematically investigated the spin-32\frac{3}{2} to spin-12\frac{1}{2} doubly charmed baryon transition magnetic moments to the next-to-next-to-leading order in the heavy baryon chiral perturbation theory (HBChPT). Numerical results of transition magnetic moments and decay widths are presented to the next-to-leading order: μΞcc++Ξcc++=2.35μN\mu_{\Xi_{cc}^{*++}\rightarrow\Xi_{cc}^{++}}=-2.35\mu_{N}, μΞcc+Ξcc+=1.55μN\mu_{\Xi_{cc}^{*+}\rightarrow\Xi_{cc}^{+}}=1.55\mu_{N}, μΩcc+Ωcc+=1.54μN\mu_{\Omega_{cc}^{*+}\rightarrow\Omega_{cc}^{+}}=1.54\mu_{N}, ΓΞcc++Ξcc++=22.0\Gamma_{\Xi_{cc}^{*++}\rightarrow\Xi_{cc}^{++}}=22.0 keV, ΓΞcc+Ξcc+=9.57\Gamma_{\Xi_{cc}^{*+}\rightarrow\Xi_{cc}^{+}}=9.57 keV, ΓΩcc+Ωcc+=9.45\Gamma_{\Omega_{cc}^{*+}\rightarrow\Omega_{cc}^{+}}=9.45 keV.Comment: arXiv admin note: text overlap with arXiv:1707.02765, arXiv:1706.0645

    Prediction of triple-charm molecular pentaquarks

    Full text link
    In a one-boson-exchange model, we study molecular states of double-charm baryon (Ξcc(3621)\Xi_{cc}(3621)) and a charmed meson (DD and DD^*). Our model indicates that there exist two possible triple-charm molecular pentaquarks, a ΞccD\Xi_{cc}D state with I(JP)=0(1/2)I(J^P)=0(1/2^-) and a ΞccD\Xi_{cc}D^* state with I(JP)=0(3/2)I(J^P)=0(3/2^-). In addition, we also extend our formula to explore ΞccBˉ()\Xi_{cc}\bar{B}^{(*)}, ΞccDˉ()\Xi_{cc}\bar{D}^{(*)}, and ΞccB()\Xi_{cc}B^{(*)} systems, and find more possible heavy flavor molecular pentaquarks, a ΞccBˉ\Xi_{cc}\bar{B} state with I(JP)=0(1/2)I(J^P)=0(1/2^-), a ΞccBˉ\Xi_{cc}\bar{B}^* state with I(JP)=0(3/2)I(J^P)=0(3/2^-), and ΞccDˉ/ΞccB\Xi_{cc}\bar{D}^*/\Xi_{cc}B^* states with I(JP)=0(1/2)I(J^P)=0(1/2^-). Experimental search for these predicted triple-charm molecular pentaquarks is encouraged.Comment: 6 pages, 4 figure

    Charmed Baryon Weak Decays with SU(3) Flavor Symmetry

    Full text link
    We study the semileptonic and non-leptonic charmed baryon decays with SU(3)SU(3) flavor symmetry, where the charmed baryons can be Bc=(Ξc0,Ξc+,Λc+){\bf B}_{c}=(\Xi_c^0,\Xi_c^+,\Lambda_c^+), Bc=(Σc(++,+,0),Ξc(+,0),Ωc0){\bf B}'_{c}=(\Sigma_c^{(++,+,0)},\Xi_{c}^{\prime(+,0)},\Omega_c^0), Bcc=(Ξcc++,Ξcc+,Ωcc+){\bf B}_{cc}=(\Xi_{cc}^{++},\Xi_{cc}^+,\Omega_{cc}^+), or Bccc=Ωccc++{\bf B}_{ccc}=\Omega^{++}_{ccc}. With Bn(){\bf B}_n^{(\prime)} denoted as the baryon octet (decuplet), we find that the BcBn+ν{\bf B}_{c}\to {\bf B}'_n\ell^+\nu_\ell decays are forbidden, while the Ωc0Ω+ν\Omega_c^0\to \Omega^-\ell^+\nu_\ell, Ωcc+Ωc0+ν\Omega_{cc}^+\to\Omega_c^0\ell^+\nu_\ell, and Ωccc++Ωcc++ν\Omega_{ccc}^{++}\to \Omega_{cc}^+\ell^+\nu_\ell decays are the only existing Cabibbo-allowed modes for BcBn+ν{\bf B}'_{c}\to {\bf B}'_n\ell^+\nu_\ell, BccBc+ν{\bf B}_{cc}\to {\bf B}'_c\ell^+\nu_\ell, and BcccBcc()+ν{\bf B}_{ccc}\to {\bf B}_{cc}^{(\prime)}\ell^+\nu_\ell, respectively. We predict the rarely studied BcBn()M{\bf B}_{c}\to {\bf B}_n^{(\prime)}M decays, such as B(Ξc0Λ0Kˉ0,Ξc+Ξ0π+)=(8.3±0.9,8.0±4.1)×103{\cal B}(\Xi_c^0\to\Lambda^0\bar K^0,\,\Xi_c^+\to\Xi^0\pi^+)=(8.3\pm 0.9,8.0\pm 4.1)\times 10^{-3} and B(Λc+Δ++π,Ξc0ΩK+)=(5.5±1.3,4.8±0.5)×103{\cal B}(\Lambda_c^+\to \Delta^{++}\pi^-,\,\Xi_c^0\to\Omega^- K^+)=(5.5\pm 1.3,4.8\pm 0.5)\times 10^{-3}. For the observation, the doubly and triply charmed baryon decays of Ωcc+Ξc+Kˉ0\Omega_{cc}^{+}\to \Xi_c^+\bar K^0, Ξcc++(Ξc+π+\Xi_{cc}^{++}\to (\Xi_c^+\pi^+, Σc++Kˉ0)\Sigma_c^{++}\bar K^0), and Ωccc++(Ξcc++Kˉ0,Ωcc+π+,Ξc+D+)\Omega_{ccc}^{++}\to (\Xi_{cc}^{++}\bar K^0,\Omega_{cc}^+\pi^+,\Xi_c^+ D^+) are the favored Cabibbo-allowed decays, which are accessible to the BESIII and LHCb experiments.Comment: 29 pages, no figure, a typo in the table correcte

    Deuteron-like states composed of two doubly charmed baryons

    Full text link
    We present a systematic investigation of the possible molecular states composed of a pair of doubly charmed baryons (ΞccΞcc\Xi_{cc}\Xi_{cc}) or one doubly charmed baryon and one doubly charmed antibaryon (ΞccΞˉcc)(\Xi_{cc}\bar{\Xi}_{cc}) within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into account the mixing between the 3S1{}^3S_1 and 3D1{}^3D_1 channels. For the baryon-baryon system ΞccΞcc\Xi_{cc}\Xi_{cc} with (R,I)=(3ˉ,1/2)(R,I) = (\bar{3}, 1/2) and (3ˉ,0)(\bar{3}, 0), where RR and II represent the group representation and the isospin of the system, respectively, there exist loosely bound molecular states. For the baryon-antibaryon system ΞccΞˉcc\Xi_{cc}\bar{\Xi}_{cc} with (R,I)=(8,1)(R,I) = (8, 1), (8,1/2)(8, 1/2) and (8,0)(8,0), there also exist deuteron-like molecules. The BccBˉccB_{cc}\bar{B}_{cc} molecular states may be produced at LHC. The proximity of their masses to the threshold of two doubly charmed baryons provides a clean clue to identify them.Comment: 18 pages, 8 figure

    CC and NC pion production

    Get PDF
    The disappearance searching experiments nu_mu ---> nu_x use charged current quasielastic (CCQE) reaction to detect an arriving neutrino and reconstruct its energy, while the CC1 pi^+ production can mimic the CCQE signal process. In nu_mu --->nu_e appearance experiments, the NC1 pi^0 production process can lead to a fake e^- event by the impossibility for the detector of distinguish an arriving electron or a photon. Here we present a consistent model, from the point of view of the construction of the elemental amplitude, for the mentioned pion production background processes including bounding, smearing and final state interaction (FSI) effects in a single fashion. Results are comparable with more evolved approaches based on Monte Carlo simulations.Fil: Mariano, Alejandro Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Barbero, César Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: López Castro, Gabriel. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; Méxic

    Continuous condensation in nanogrooves

    Full text link
    We consider condensation in a capillary groove of width LL and depth DD, formed by walls that are completely wet (contact angle θ=0\theta=0), which is in a contact with a gas reservoir of the chemical potential μ\mu. On a mesoscopic level, the condensation process can be described in terms of the midpoint height \ell of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (DD\to\infty), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second order phase transition, such that (μccμ)1/4\ell\sim (\mu_{cc}-\mu)^{-1/4} as μμcc\mu\to\mu_{cc}^- where μcc\mu_{cc} is the chemical potential pertinent to capillary condensation in a slit pore of width LL. For finite values of DD, the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μcc\mu_{cc} with a difference of the order of D3D^{-3}. For sufficiently deep grooves, the meniscus growth initially follows the power-law (μccμ)1/4\ell\sim (\mu_{cc}-\mu)^{-1/4} but this behaviour eventually crosses over to D(μμcc)1/3\ell\sim D-(\mu-\mu_{cc})^{-1/3} above μcc\mu_{cc}, with a gap between the two regimes shown to be δˉμD3\bar{\delta}\mu\sim D^{-3}. Right at μ=μcc\mu=\mu_{cc}, when the groove is only partially filled with liquid, the height of the meniscus scales as (D3L)1/4\ell^*\sim (D^3L)^{1/4}. Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a non-monotonic dependence on DD with a maximum at D3L/2D\approx 3L/2 and coincides with μcc\mu_{cc} when LDL\approx D. Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance DD apart with potential strengths depending on LL
    corecore