203,818 research outputs found

    Exoplanet Catalogues

    Full text link
    One of the most exciting developments in the field of exoplanets has been the progression from 'stamp-collecting' to demography, from discovery to characterisation, from exoplanets to comparative exoplanetology. There is an exhilaration when a prediction is confirmed, a trend is observed, or a new population appears. This transition has been driven by the rise in the sheer number of known exoplanets, which has been rising exponentially for two decades (Mamajek 2016). However, the careful collection, scrutiny and organisation of these exoplanets is necessary for drawing robust, scientific conclusions that are sensitive to the biases and caveats that have gone into their discovery. The purpose of this chapter is to discuss and demonstrate important considerations to keep in mind when examining or constructing a catalogue of exoplanets. First, we introduce the value of exoplanetary catalogues. There are a handful of large, online databases that aggregate the available exoplanet literature and render it digestible and navigable - an ever more complex task with the growing number and diversity of exoplanet discoveries. We compare and contrast three of the most up-to-date general catalogues, including the data and tools that are available. We then describe exoplanet catalogues that were constructed to address specific science questions or exoplanet discovery space. Although we do not attempt to list or summarise all the published lists of exoplanets in the literature in this chapter, we explore the case study of the NASA Kepler mission planet catalogues in some detail. Finally, we lay out some of the best practices to adopt when constructing or utilising an exoplanet catalogue.Comment: 14 pages, 6 figures. Invited review chapter, to appear in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, section editor N. Batalh

    Issues in joint SZ and optical cluster finding

    Full text link
    We apply simple optical and SZ cluster finders to mock galaxy catalogues and SZ flux maps created from dark matter halos in a (1 Gpc/h)^3 dark matter simulation, at redshifts 0.5 and 0.9. At each redshift, the two catalogues are then combined to assess how well they can improve each other, and compared to several variants of catalogues made using SZ flux and galaxy information simultaneously. We use several different criteria to compare the catalogues, and illustrate some of the tradeoffs which arise in tuning the galaxy cluster finders with respect to these criteria. We detail many of the resulting improvements and issues which arise in comparing and combining these two types of data sets.Comment: 14 pages, added information thanks to helpful suggestions from refere

    The matter distribution in the local Universe as derived from galaxy groups in SDSS DR12 and 2MRS

    Full text link
    Context. Friends-of-friends algorithms are a common tool to detect galaxy groups and clusters in large survey data. In order to be as precise as possible, they have to be carefully calibrated using mock catalogues. Aims. We create an accurate and robust description of the matter distribution in the local Universe using the most up-to-date available data. This will provide the input for a specific cosmological test planned as follow-up to this work, and will be useful for general extragalactic and cosmological research. Methods. We created a set of galaxy group catalogues based on the 2MRS and SDSS DR12 galaxy samples using a friends-of-friends based group finder algorithm. The algorithm was carefully calibrated and optimised on a new set of wide-angle mock catalogues from the Millennium simulation, in order to provide accurate total mass estimates of the galaxy groups taking into account the relevant observational biases in 2MRS and SDSS. Results. We provide four different catalogues (i) a 2MRS based group catalogue; (ii) an SDSS DR12 based group catalogue reaching out to a redshift z = 0.11 with stellar mass estimates for 70% of the galaxies; (iii) a catalogue providing additional fundamental plane distances for all groups of the SDSS catalogue that host elliptical galaxies; (iv) a catalogue of the mass distribution in the local Universe based on a combination of our 2MRS and SDSS catalogues. Conclusions. While motivated by a specific cosmological test, three of the four catalogues that we produced are well suited to act as reference databases for a variety of extragalactic and cosmological science cases. Our catalogue of fundamental plane distances for SDSS groups provides further added value to this paper.Comment: 31 pages, 25 figures, accepted for publication in A&

    Proper identification of RR Lyrae Stars brighter than 12.5 mag

    Full text link
    RR Lyrae stars are of great importance for investigations of Galactic structure. However, a complete compendium of all RR-Lyraes in the solar neighbourhood with accurate classifications and coordinates does not exist to this day. Here we present a catalogue of 561 local RR-Lyrae stars V_max less equal 12.5 mag according to the magnitudes given in the Combined General Catalogue of Variable Stars (GCVS) and 16 fainter ones. The Tycho2 catalogue contains about 100 RR Lyr stars. However, many objects have inaccurate coordinates in the GCVS, the primary source of variable star information, so that a reliable cross-identification is difficult. We identified RR Lyrae from both catalogues based on an intensive literature search. In dubious cases we carried out photometry of fields to identify the variable. Mennessier and Colome (2002) have published a paper with Tyc2-GCVS identifications, but we found that many of their identifications are wrong. Keywords: astrometry -- Stars: RR Lyrae stars -- Catalogues: Tycho-2 catalogue -- Catalogues: The HST Guide Star Catalogue, Version 1.2 -- Catalogues: Combined General Catalogue of Variable StarsComment: 5 pages with 2 figures; A and A accepted Online-Data are available under http://www.astro.uni-bonn.de/~gmaint

    HerMES: point source catalogues from Herschel-SPIRE observations II

    Get PDF
    Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ∼380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ∼74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the SUSSEXTRACTOR point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, STARFINDER, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES)

    Telescopes don't make catalogues!

    Full text link
    Astronomical instruments make intensity measurements; any precise astronomical experiment ought to involve modeling those measurements. People make catalogues, but because a catalogue requires hard decisions about calibration and detection, no catalogue can contain all of the information in the raw pixels relevant to most scientific investigations. Here we advocate making catalogue-like data outputs that permit investigators to test hypotheses with almost the power of the original image pixels. The key is to provide users with approximations to likelihood tests against the raw image pixels. We advocate three options, in order of increasing difficulty: The first is to define catalogue entries and associated uncertainties such that the catalogue contains the parameters of an approximate description of the image-level likelihood function. The second is to produce a K-catalogue sampling in "catalogue space" that samples a posterior probability distribution of catalogues given the data. The third is to expose a web service or equivalent that can re-compute on demand the full image-level likelihood for any user-supplied catalogue.Comment: presented at ELSA 2010: Gaia, at the frontiers of astrometr

    On the usefulness of finding charts Or the runaway carbon stars of the Blanco & McCarthy field 37

    Get PDF
    We have been recently faced with the problem of cross--identifying stars recorded in historical catalogues with those extracted from recent fully digitized surveys (such as DENIS and 2MASS). Positions mentioned in the old catalogues are frequently of poor precision, but are generally accompanied by finding charts where the interesting objects are flagged. Those finding charts are sometimes our only link with the accumulated knowledge of past literature. While checking the identification of some of these objects in several catalogues, we had the surprise to discover a number of discrepancies in recent works.The main reason for these discrepancies was generally the blind application of the smallest difference in position as the criterion to identify sources from one historical catalogue to those in more recent surveys. In this paper we give examples of such misidentifications, and show how we were able to find and correct them.We present modern procedures to discover and solve cross--identification problems, such as loading digitized images of the sky through the Aladin service at CDS, and overlaying entries from historical catalogues and modern surveys. We conclude that the use of good finding charts still remains the ultimate (though time--consuming) tool to ascertain cross--identifications in difficult cases.Comment: 4 pages, 1 figure, accepted by A&

    A new approach to the assessment of stochastic errors of radio source position catalogues

    Full text link
    Assessing the external stochastic errors of radio source position catalogues derived from VLBI observations is important for tasks such as estimating the quality of the catalogues and their weighting during combination. One of the widely used methods to estimate these errors is the three-cornered-hat technique, which can be extended to the N-cornered-hat technique. A critical point of this method is how to properly account for the correlations between the compared catalogues. We present a new approach to solving this problem that is suitable for simultaneous investigations of several catalogues. To compute the correlation between two catalogues AA and BB, the differences between these catalogues and a third arbitrary catalogue CC are computed. Then the correlation between these differences is considered as an estimate of the correlation between catalogues AA and BB. The average value of these estimates over all catalogues CC is taken as a final estimate of the target correlation. In this way, an exhaustive search of all possible combinations allows one to compute the paired correlations between all catalogues. As an additional refinement of the method, we introduce the concept of weighted correlation coefficient. This technique was applied to nine recently published radio source position catalogues. We found large systematic differences between catalogues, that significantly impact determination of their stochastic errors. Finally, we estimated the stochastic errors of the nine catalogues
    corecore