671,934 research outputs found
Recommended from our members
Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping.
Key messageA high-resolution genetic map combined with haplotype analyses identified a wheat ortholog of rice gene APO1 as the best candidate gene for a 7AL locus affecting spikelet number per spike. A better understanding of the genes controlling differences in wheat grain yield components can accelerate the improvements required to satisfy future food demands. In this study, we identified a promising candidate gene underlying a quantitative trait locus (QTL) on wheat chromosome arm 7AL regulating spikelet number per spike (SNS). We used large heterogeneous inbred families ( > 10,000 plants) from two crosses to map the 7AL QTL to an 87-kb region (674,019,191-674,106,327 bp, RefSeq v1.0) containing two complete and two partial genes. In this region, we found three major haplotypes that were designated as H1, H2 and H3. The H2 haplotype contributed the high-SNS allele in both H1 × H2 and H2 × H3 segregating populations. The ancestral H3 haplotype is frequent in wild emmer (48%) but rare (~ 1%) in cultivated wheats. By contrast, the H1 and H2 haplotypes became predominant in modern cultivated durum and common wheat, respectively. Among the four candidate genes, only TraesCS7A02G481600 showed a non-synonymous polymorphism that differentiated H2 from the other two haplotypes. This gene, designated here as WHEAT ORTHOLOG OF APO1 (WAPO1), is an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1), which affects spikelet number. Taken together, the high-resolution genetic map, the association between polymorphisms in the different mapping populations with differences in SNS, and the known role of orthologous genes in other grass species suggest that WAPO-A1 is the most likely candidate gene for the 7AL SNS QTL among the four genes identified in the candidate gene region
Unifying candidate gene and GWAS Approaches in Asthma.
The first genome wide association study (GWAS) for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children. Genotyping data were compared to imputation data derived from Illumina HumanHap300 chip genotyping. Results were combined to analyze 566 SNPs covering all 14 candidate gene loci. Genotyped polymorphisms in ADAM33, GSTP1 and VDR showed effects with p-values <0.0035 (corrected for multiple testing). Combining genotyping and imputation, polymorphisms in DPP10, EDN1, IL12B, IL13, IL4, IL4R and TNF showed associations at a significance level between p = 0.05 and p = 0.0035. These data indicate that (a) GWAS coverage is insufficient for many asthma candidate genes, (b) imputation based on these data is reliable but incomplete, and (c) SNPs in three previously identified asthma candidate genes replicate in our GWAS population with significance after correction for multiple testing in 14 genes
Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease
Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation
Using genomic annotations increases statistical power to detect eGenes.
MotivationExpression quantitative trait loci (eQTLs) are genetic variants that affect gene expression. In eQTL studies, one important task is to find eGenes or genes whose expressions are associated with at least one eQTL. The standard statistical method to determine whether a gene is an eGene requires association testing at all nearby variants and the permutation test to correct for multiple testing. The standard method however does not consider genomic annotation of the variants. In practice, variants near gene transcription start sites (TSSs) or certain histone modifications are likely to regulate gene expression. In this article, we introduce a novel eGene detection method that considers this empirical evidence and thereby increases the statistical power.ResultsWe applied our method to the liver Genotype-Tissue Expression (GTEx) data using distance from TSSs, DNase hypersensitivity sites, and six histone modifications as the genomic annotations for the variants. Each of these annotations helped us detected more candidate eGenes. Distance from TSS appears to be the most important annotation; specifically, using this annotation, our method discovered 50% more candidate eGenes than the standard permutation [email protected] or [email protected]
Logical Operation Based Literature Association with Genes and its application, PosMed.
PosMed prioritizes candidate genes for positional cloning by employing our original database search engine GRASE, which uses an inferential process similar to an artificial neural network comprising documental neurons (or 'documentrons') that represent each document contained in databases such as MEDLINE and OMIM (Yoshida, _et al_. 2009, Makita, _et al_. 2009). PosMed immediately ranks the candidate genes by connecting phenotypic keywords to the genes through connections representing gene–gene interactions other biological relationships, such as metabolite–gene, mutant mouse–gene, drug–gene, disease–gene, and protein–protein interactions, ortholog data, and gene–literature connections.

To make proper relationships between genes and literature, we manually curate queries, which are defined by logical operation rules, against MEDLINE. For example, to detect a set of MEDLINE documents for the AT1G03880 gene in _A. thaliana_, we applied the following logical query: (‘AT1G03880’ OR ‘CRU2’ OR ‘CRB’ OR ‘CRUCIFERIN 2' OR ‘CRUCIFERIN B’) AND (‘Arabidopsis’) NOT (‘chloroplast RNA binding’). Curators refined these queries in mouse, rice and _A. thaliana_. For human and rat genes, we use mouse curation results via ortholog genes in PosMed.

PosMed is available at "http://omicspace.riken.jp/PosMed":http://omicspace.riken.jp/PosMed

References:
Yoshida Y, et al. _Nucleic Acids Res_. 37(Web Server issue):W147-52. 2009. 
Makita Y, et al. _Plant Cell Physiol_. 2009 Jul;50(7):1249-59.

- …
