753 research outputs found

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    Impact of Device Parameteres of Triple Gate SOI-FINFET on the Performance of CMOS Inverter at 22NM

    Get PDF
    A simulation based design evaluation is reported for SOI FinFETs at 22nm gate length. The impact of device parameters on the static power dissipation and delay of a CMOS inverter is presented. Fin dimensions such as Fin width and height are varied. For a given gate oxide thickness increasing the fin height and fin width degrades the SCEs, while improves the performance. It was found that reducing the fin thickness was beneficial in reducing the off state leakage current (IOFF), while reducing the fin height was beneficial in reducing the gate leakage current (IGATE). It was found that Static power dissipation of the inverter increases with fin height due to the increase in leakage current, whereas delay decreased with increase fin width due to higher on current. The performance of the inverter decreased with the down scaling of the gate oxide thickness due to higher gate leakage current and gate capacitance

    Master of Science

    Get PDF
    thesisAdvances in silicon photonics are enabling hybrid integration of optoelectronic circuits alongside current complementary metal-oxide-semiconductor (CMOS) technologies. To fully exploit the capability of this integration, it is important to explore the effects of thermal gradients on optoelectronic devices. The sensitivity of optical components to temperature variation gives rise to design issues in silicon on insulator (SOI) optoelectronic technology. The thermo-electric effect becomes problematic with the integration of hybrid optoelectronic systems, where heat is generated from electrical components. Through the thermo-optic effect, the optical signals are in turn affected and compensation is necessary. To improve the capability of optical SOI designs, optical-wave-simulation models and the characteristic thermal operating environment need to be integrated to ensure proper operation. In order to exploit the potential for compensation by virtue of resynthesis, temperature characterization on a system level is required. Thermal characterization within the flow of physical design automation tools for hybrid optoelectronic technology enables device resynthesis and validation at a system level. Additionally, thermally-aware routing and placement would be possible. A simplified abstraction will help in the active design process, within the contemporary computer-aided design (CAD) flow when designing optoelectronic features. This thesis investigates an abstraction model to characterize the effect of a temperature gradient on optoelectronic circuit operation. To make the approach scalable, reduced order computations are desired that effectively model the effect of temperature on an optoelectronic layout; this is achieved using an electrical analogy to heat flow. Given an optoelectronic circuit, using a thermal resistance network to abstract thermal flow, we compute the temperature distribution throughout the layout. Subsequently, we show how this thermal distribution across the optoelectronic system layout can be integrated within optoelectronic device- and system-level analysis tools

    Idiomatic integrated circuit design

    Get PDF

    Why area might reduce power in nanoscale CMOS

    Get PDF
    In this paper we explore the relationship between power and area. By exploiting parallelism (and thus using more area) one can reduce the switching frequency allowing a reduction in VDD which results in a reduction in power. Under a scaling regime which allows threshold voltage to increase as VDD decreases we find that dynamic and subthreshold power loss in CMOS exhibit a dependence on area proportional to A(s-3)s/ while gate leakage power ? A(s-6)s/, and short circuit power ? A(s-8)s/. Thus, with the large number of devices at our disposal we can exploit techniques such as spatial computing, tailoring the program directly to the hardware, to overcome the negative effects of scaling. The value of s describes the effectiveness of the technique for a particular circuit and/or algorithm - for circuits that exhibit a value of s =3, power will be a constant or reducing function of area. We briefly speculate on how s might be influenced by a move to nanoscale technology

    Fin Field Effect Transistors Performance in Analog and RF for High-k Dielectrics

    Get PDF
    The high-k is needed to replace SiO2 as the gate dielectric to reduce the gate leakage current. The impact of a high-k gate dielectric on the device short channel performance and scalability of nanoscale double gate Fin Field Effect Transistors (FinFET) CMOS is examined by 2-D device simulations. DG FinFETs are designed with high-k at the high performance node of the 2008 Semiconductor Industry Association International Technology Roadmap for Semiconductors (ITRS). DG FinFET CMOS can be optimally designed to yield outstanding performance with good trade-offs between speed and power consumption as the gate length is scaled to < 10 nm. Using technology computer aided design (TCAD) tools a 2-D FinFET device is created and the simulations are performed on it. The optimum value of threshold voltage is identified as VT=0.653V with e=23(ZrO2) for the 2-D device structure. For the 2-D device structure, the leakage current has been reduced to 9.47´10-14 A. High-k improves the Ion/Ioff ratio of transistors for future high-speed logic applications and also improves the storage capability.Defence Science Journal, 2011, 61(3), pp.235-240, DOI:http://dx.doi.org/10.14429/dsj.61.69

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    A Comparative Review on ALU using CMOS and GDI techniques for Power Dissipation and Propagation Delay

    Get PDF
    Arithmetic and Logic Circuits are to be designed with less power, compact size, less propagation delay in this fast growing era of technology. Arithmetic operations are indispensable and the basic functions for any high speed low power applications like digital signal processing, microprocessors, image processing, etc. Consumption of power is the major issue in designing these circuits. Also the number of transistors required is also the one of the issues in designing the circuits. To minimize the transistors required in designing the circuits and to reduce the power consumption of the circuits, the authors have referred some techniques to overcome these problems in this paper. By reviewing all these techniques, the authors try to implement the GDI technique to reduce the power consumption and transistors count or the area required to design the circuits
    • …
    corecore