11,402 research outputs found
User Assignment in C-RAN Systems: Algorithms and Bounds
In this work, we investigate the problem of mitigating interference between
so called antenna domains of a cloud radio access network (C-RAN). In contrast
to previous work, we turn to an approach utilizing primarily the optimal
assignment of users to central processors in a C-RAN deployment. We formulate
this user assignment problem as an integer optimization problem, and propose an
iterative algorithm for obtaining a solution. Motivated by the lack of
optimality guarantees on such solutions, we opt to find lower bounds on the
problem, and the resulting interference leakage in the network. We thus derive
the corresponding Dantzig-Wolfe decomposition, formulate the dual problem, and
show that the former offers a tighter bound than the latter. We highlight the
fact that the bounds in question consist of linear problems with an exponential
number of variables, and adapt the column generation method for solving them.
In addition to shedding light on the tightness of the bounds in question, our
numerical results show significant sum-rate gains over several comparison
schemes. Moreover, the proposed scheme delivers similar performance as W-MMSE
with a significantly lower complexity (around 10 times less).Comment: IEEE Transactions on Wireless Communications, 30 pages (single
column
Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-based Cloud Radio Access Network
The performance of cloud radio access network (C-RAN) is constrained by the
limited fronthaul link capacity under future heavy data traffic. To tackle this
problem, extensive efforts have been devoted to design efficient signal
quantization/compression techniques in the fronthaul to maximize the network
throughput. However, most of the previous results are based on
information-theoretical quantization methods, which are hard to implement due
to the extremely high complexity. In this paper, we consider using practical
uniform scalar quantization in the uplink communication of an orthogonal
frequency division multiple access (OFDMA) based C-RAN system, where the mobile
users are assigned with orthogonal sub-carriers for multiple access. In
particular, we consider joint wireless power control and fronthaul quantization
design over the sub-carriers to maximize the system end-to-end throughput.
Efficient algorithms are proposed to solve the joint optimization problem when
either information-theoretical or practical fronthaul quantization method is
applied. Interestingly, we find that the fronthaul capacity constraints have
significant impact to the optimal wireless power control policy. As a result,
the joint optimization shows significant performance gain compared with either
optimizing wireless power control or fronthaul quantization alone. Besides, we
also show that the proposed simple uniform quantization scheme performs very
close to the throughput performance upper bound, and in fact overlaps with the
upper bound when the fronthaul capacity is sufficiently large. Overall, our
results would help reveal practically achievable throughput performance of
C-RAN, and lead to more efficient deployment of C-RAN in the next-generation
wireless communication systems.Comment: submitted for possible publicatio
Energy Efficiency and Quality of Services in Virtualized Cloud Radio Access Network
Cloud Radio Access Network (C-RAN) is being widely studied for soft and green fifth generation of Long Term Evolution - Advanced (LTE-A). The recent technology advancement in network virtualization function (NFV) and software defined radio (SDR) has enabled virtualization of Baseband Units (BBU) and sharing of underlying general purpose processing (GPP) infrastructure. Also, new innovations in optical transport network (OTN) such as Dark Fiber provides low latency and high bandwidth channels that can support C-RAN for more than forty-kilometer radius. All these advancements make C-RAN feasible and practical. Several virtualization strategies and architectures are proposed for C-RAN and it has been established that C-RAN offers higher energy efficiency and better resource utilization than the current decentralized radio access network (D-RAN). This project studies proposed resource utilization strategy and device a method to calculate power utilization. Then proposes and analyzes a new resource management and virtual BBU placement strategy for C-RAN based on demand prediction and inter-BBU communication load. The new approach is compared with existing state of art strategies with same input scenarios and load. The trade-offs between energy efficiency and quality of services is discussed. The project concludes with comparison between different strategies based on complexity of the system, performance in terms of service availability and optimization efficiency in different scenarios
- …
