9 research outputs found

    Rational Fair Consensus in the GOSSIP Model

    Full text link
    The \emph{rational fair consensus problem} can be informally defined as follows. Consider a network of nn (selfish) \emph{rational agents}, each of them initially supporting a \emph{color} chosen from a finite set Σ \Sigma. The goal is to design a protocol that leads the network to a stable monochromatic configuration (i.e. a consensus) such that the probability that the winning color is cc is equal to the fraction of the agents that initially support cc, for any cΣc \in \Sigma. Furthermore, this fairness property must be guaranteed (with high probability) even in presence of any fixed \emph{coalition} of rational agents that may deviate from the protocol in order to increase the winning probability of their supported colors. A protocol having this property, in presence of coalitions of size at most tt, is said to be a \emph{whp\,-tt-strong equilibrium}. We investigate, for the first time, the rational fair consensus problem in the GOSSIP communication model where, at every round, every agent can actively contact at most one neighbor via a \emph{push//pull} operation. We provide a randomized GOSSIP protocol that, starting from any initial color configuration of the complete graph, achieves rational fair consensus within O(logn)O(\log n) rounds using messages of O(log2n)O(\log^2n) size, w.h.p. More in details, we prove that our protocol is a whp\,-tt-strong equilibrium for any t=o(n/logn)t = o(n/\log n) and, moreover, it tolerates worst-case permanent faults provided that the number of non-faulty agents is Ω(n)\Omega(n). As far as we know, our protocol is the first solution which avoids any all-to-all communication, thus resulting in o(n2)o(n^2) message complexity.Comment: Accepted at IPDPS'1

    Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing

    Get PDF
    Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.Comment: Published in ACM CCS 2017, this is the full version with all appendice

    Distributed computing building blocks for rational agents

    Full text link
    Following [4] we extend and generalize the game-theoretic model of distributed computing, identifying different utility functions that encompass different potential preferences of players in a distributed system. A good distributed algorithm in the game-theoretic context is one that prohibits the agents (processors with interests) from de-viating from the protocol; any deviation would result in the agent losing, i.e., reducing its utility at the end of the algorithm. We dis-tinguish between different utility functions in the context of dis-tributed algorithms, e.g., utilities based on communication prefer-ence, solution preference, and output preference. Given these pref-erences we construct two basic building blocks for game theoretic distributed algorithms, a wake-up building block resilient to any preference and in particular to the communication preference (to which previous wake-up solutions were not resilient), and a knowl-edge sharing building block that is resilient to any and in partic-ular to solution and output preferences. Using the building blocks we present several new algorithms for consensus, and renaming as well as a modular presentation of the leader election algorithm of [4]
    corecore