3 research outputs found

    Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model

    No full text
    A thermodynamic model has been developed to calculate burning speed and entropy production of transient expending spherical laminar flame in an enclosed vessel. The model also predicts the particle trajectories of both unburned and burned gases in the vessel. The input to this model is the dynamic pressure rise due to combustion process. The unburned gases are divided into three regions: The core unburned gases which are compressed isentropically, the vessel walls and electrodes boundary layer gases, and gases in the preheat zone of the flames. The burned gases are in many shells having the same pressure but different temperatures. The model also includes radiation losses from the burned gases to vessel walls. Entropy production due to irreversibility has been calculated by applying entropy balance to the gas mixtures. Burning speed of premixed n-decane air mixture has been reported for temperatures and pressures along an isentrope

    Experimental Investigation of Advanced Ignition Systems for High Efficiency Combustion

    Get PDF
    Consumption of fossil and bio-derived fuels is growing due to energy demands associated with increase in population and standard of living across the globe. Power generation and transportation sectors are the primary two sources of fuel consumption, which have raised the demand for crude oil and led to serious environmental pollution issues. This demand for energy forced various government agencies to strengthen the allowable exhaust pollutant concentration limits. Recently, CO, CO2, particulate matter, and nitrogen oxides (NOx) emission restrictions have become more stringent to the extent that engines must operate at higher energy densities and efficiencies. Towards this goal, this doctoral study focused on evaluating advanced ignition systems and testing new biofuels for automotive combustion applications. First, a natural gas lean combustion mode was assessed by using advance ignition systems to provide higher brake power while maintaining the exhaust limits. A rigorous combustion data analysis was performed to identify the main reasons leading to improved performance in the case of prechamber equipped laser ignition. An overall efficiency improvement of 2.1% points was observed, compared to spark ignition, which in turn leads to save 633 PJ per year. In the second part of this dissertation, a spherical chamber was designed and validated to measure the laminar burning velocity (LBV) of a promising biofuel: 2,4-Dimethyl-3-pentanone, (DIPK), for homogenous charge compression ignition engines. LBV measurements were carried out with various diluent species (N2, Ar, and He) in order to provide several data points for development and validation of DIPK chemical kinetic mechanisms. It has been found that DIPK does not only have higher temperature and pressure sensitivities (compared to iso-octane), but additionally enabled a faster laminar burning velocity which leads to higher rate of heat release in reciprocating engines
    corecore