2,244 research outputs found

    A Note on Easy and Efficient Computation of Full Abelian Periods of a Word

    Get PDF
    Constantinescu and Ilie (Bulletin of the EATCS 89, 167-170, 2006) introduced the idea of an Abelian period with head and tail of a finite word. An Abelian period is called full if both the head and the tail are empty. We present a simple and easy-to-implement O(nloglogn)O(n\log\log n)-time algorithm for computing all the full Abelian periods of a word of length nn over a constant-size alphabet. Experiments show that our algorithm significantly outperforms the O(n)O(n) algorithm proposed by Kociumaka et al. (Proc. of STACS, 245-256, 2013) for the same problem.Comment: Accepted for publication in Discrete Applied Mathematic

    Algorithms for Computing Abelian Periods of Words

    Full text link
    Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the notion of an \emph{Abelian period} of a word. A word of length nn over an alphabet of size σ\sigma can have Θ(n2)\Theta(n^{2}) distinct Abelian periods. The Brute-Force algorithm computes all the Abelian periods of a word in time O(n2×σ)O(n^2 \times \sigma) using O(n×σ)O(n \times \sigma) space. We present an off-line algorithm based on a \sel function having the same worst-case theoretical complexity as the Brute-Force one, but outperforming it in practice. We then present on-line algorithms that also enable to compute all the Abelian periods of all the prefixes of ww.Comment: Accepted for publication in Discrete Applied Mathematic

    Global Computing II. Terms of reference for the FP6-EU-FET call.

    No full text
    The European Commission has decided to continue and develop its FET “Global Computing,” and will shortly announce the opening of “Global Computing II.” The call is expected in May 2004, with application deadlines in September, and expected start date for selected projects in March 2005
    corecore