2 research outputs found

    Building maps of large environments using splines and geometric analysis

    Full text link
    Recently, a novel solution to the Simultaneous Localization and Map building (SLAM) problem for complex indoor environments was presented, using a set of splines for describing the geometries detected by a laser range finder mounted on a mobile platform. In this paper, a method for exploiting the geometric information underlying in these maps in the data association process is described. The proposed approach uses graphs of relations between simple features extracted from the environment, and a bit encoded implementation for obtaining a maximum clique that relates observations with previously visited areas. This information is used to update the relative positions of a collage of submaps of limited size

    Sensitive Skin for Robotics

    Get PDF
    This thesis explores two novel ways of reducing the data complexity of tactile sensing. The thesis begins by examining the state-of-the art in tactile sensing, not only examining the sensor construction and interpretation of data but also the motivation for these designs. The thesis then proposes two methods for reducing the complexity of data in tactile sensing. The first is a low-power tactile sensing array exploiting a novel application of a pressure-sensitive material called quantum tunnelling composite. The properties of this material in this array form are shown to be beneficial in robotics. The electrical characteristics of the material are also explored. A bit-based structure for representing tactile data called Bitworld is then defined and its computational performance is characterised. It is shown that this bit-based structure outperforms floating-point arrays by orders of magnitude. This structure is then shown to allow high-resolution images to be produced by combining low resolution sensor arrays with equivalent functional performance to a floating-point array, but with the advantages of computational efficiency. Finally, an investigation into making Bitworld robust in the presence of positional noise is described with simulations to verify that such robustness can be achieved. Overall, the sensor and data structure described in this thesis allow simple, but effective tactile systems to be deployed in robotics without requiring a significant commitment of computational or power resources on the part of a robot designer.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore