85,334 research outputs found

    Collaborative multidisciplinary learning : quantity surveying students’ perspectives

    Get PDF
    The construction industry is highly fragmented and is known for its adversarial culture, culminating in poor quality projects not completed on time or within budget. The aim of this study is thus to guide the design of QS programme curricula in order to help students develop the requisite knowledge and skills to work more collaboratively in their multi-disciplinary future workplaces. A qualitative approach was considered appropriate as the authors were concerned with gathering an initial understanding of what students think of multi-disciplinary learning. The data collection method used was a questionnaire which was developed by the Behaviours4Collaboration (B4C) team. Knowledge gaps were still found across all the key areas where a future QS practitioner needs to be collaborative (either as a project contributor or as a project leader) despite the need for change instigated by the multi-disciplinary (BIM) education revolution. The study concludes that universities will need to be selective in teaching, and innovative in reorienting, QS education so that a collaborative BIM education can be effected in stages, increasing in complexity as the students’ technical knowledge grows. This will help students to build the competencies needed to make them future leaders. It will also support programme currency and delivery

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area

    Conceptual Framework for the Use of Building Information Modeling in Engineering Education

    Get PDF
    The objective of this paper is to present a critical literature review of the Building Information Modelling (BIM) methodologyandtoanalyzewhetherBIMcanbeconsideredaVirtualLearningEnvironment.Aconceptualframeworkis proposed for using BIM in a university context. A search of documents was carried out in the Core Collection of Web of Science; it was restricted to the last five years (2013–2017). A total of 95 documents were analyzed; all documents were written in English and peer reviewed. BIM meets all the characteristics of Virtual Learning Environments. The proposed framework has three dimensions (competencies, pedagogical approach and level of integration).It allows for the planning and analysis of future experiences of teaching BIM in a university context.Ministry of Economy and Competitiveness of Spain and AEI/FEDER, UE Projects EDU2016-77007-RRegional Government of Extremadura (Spain) IB 16068Regional Government of Extremadura (Spain) GR1800

    Building Information Modeling as Tool for Enhancing Disaster Resilience of the Construction Industry

    Get PDF
    As frequencies of the disasters are increasing, new technologies can be used to enhance disaster resilience performance of the construction industry. This paper investigates the usage of BIM (Building Information Modeling) in enhancing disaster resilience of the construction industry and in the establishment of the resilient built environment. In-depth literature review findings reveal BIM’s contribution to the disaster resilience in the pre-disaster and post-disaster phases especially through influencing the performance of the supply chain, construction process, and rescue operations. This paper emphasises the need for BIM’s integration to the education and training curriculums of the built environment professionals. Policy makers, construction professionals, professional bodies, academics can benefit from this research

    Water Resources Review - Fall 2008, Vol 21, No. 1

    Get PDF

    A reality check: Taking authentic e-learning from design to implemntation

    Get PDF
    Tampere University of Applied Sciences has developed a postgraduate certificate program for teaching in higher education that is currently being implemented at Higher Colleges of Technology in the United Arab Emirates. In the design of the program, the principles of authentic e-learning (Herrington, Reeves, & Oliver 2010) have been used as a guideline. This paper examines how the design principles have been transferred into practice and how the elements of authentic learning have been realized from the student perspective. The experiences of the students have been mapped in a survey conducted after the first semester of the program. The data was analyzed with the help of the authentic e-learning framework in order to identify the challenges and successes regarding the implementation of the elements of authentic e-learning and thus draw guidelines for future development
    corecore