5,369 research outputs found

    Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine

    Get PDF
    Deep neural networks have achieved impressive results in computer vision and machine learning. Unfortunately, state-of-the-art networks are extremely compute and memory intensive which makes them unsuitable for mW-devices such as IoT end-nodes. Aggressive quantization of these networks dramatically reduces the computation and memory footprint. Binary-weight neural networks (BWNs) follow this trend, pushing weight quantization to the limit. Hardware accelerators for BWNs presented up to now have focused on core efficiency, disregarding I/O bandwidth and system-level efficiency that are crucial for deployment of accelerators in ultra-low power devices. We present Hyperdrive: a BWN accelerator dramatically reducing the I/O bandwidth exploiting a novel binary-weight streaming approach, which can be used for arbitrarily sized convolutional neural network architecture and input resolution by exploiting the natural scalability of the compute units both at chip-level and system-level by arranging Hyperdrive chips systolically in a 2D mesh while processing the entire feature map together in parallel. Hyperdrive achieves 4.3 TOp/s/W system-level efficiency (i.e., including I/Os)---3.1x higher than state-of-the-art BWN accelerators, even if its core uses resource-intensive FP16 arithmetic for increased robustness

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progĂšs ont Ă©tĂ© rĂ©alisĂ©s dans le dĂ©veloppement des systĂšmes biomĂ©dicaux implantables grĂące aux derniĂšres avancĂ©es de la microĂ©lectronique et des technologies sans fil. NĂ©anmoins, ces appareils restent difficiles Ă  commercialier. Cette situation est due particuliĂšrement Ă  un manque de stratĂ©gies de design capable supporter les fonctionnalitĂ©s exigĂ©es, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil Ă  haut dĂ©bit fiable et faible puissance capable de connecter les implants et les pĂ©riphĂ©riques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvĂ©s dans les derniĂšres interfaces cerveau-ordinateur (IMC) ne cesse de croĂźtre afin d’augmenter la prĂ©cision de contrĂŽle, et d’amĂ©liorer notre comprĂ©hension des fonctions cĂ©rĂ©brales. Ce nombre est appelĂ© Ă  atteindre un millier de site Ă  court terme, ce qui exige des dĂ©bits de donnĂ©es atteingnant facilement les 500 Mbps. Ceci Ă©tant dit, ces travaux visent Ă  Ă©laborer de nouvelles stratĂ©gies innovantes de conception de dispositifs biomĂ©dicaux implantables afin de repousser les limites mentionnĂ©es ci-dessus. On prĂ©sente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de donnĂ©es sans fil Ă  haut dĂ©bit ainsi que l’analyse et la rĂ©alisation de ces derniĂšres grĂące Ă  des prototypes microĂ©lectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive Ă  rĂ©sonance prĂ©sentant une puissance sans fil distribuĂ©e uniformĂ©ment pour alimenter des systĂšmes miniatures d’étude du cerveaux avec des models animaux en ilbertĂ© ainsi que des dispositifs mĂ©dicaux implantbles sans fil qui se caractĂ©risent par une capacitĂ© de positionnement libre. La structure propose un lien de rĂ©sonance multibobines inductive, dont le rĂ©sonateur principal est constituĂ© d’une multitude de rĂ©sonateurs identiques disposĂ©s dans une matrice de bobines carrĂ©es. Ces derniĂšres sont connectĂ©es en parallĂšle afin de rĂ©aliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposĂ©e utilise deux matrices de rĂ©sonateurs de base, mises face Ă  face et connectĂ©s en parallĂšle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposĂ©es, connectĂ©es en parallĂšle et rĂ©ailsĂ©es sur une carte de circuit imprimĂ© deux couches FR4. La chambre dispose d’un mĂ©canisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procĂ©dant ainsi, nous Ă©vitons la nĂ©cessitĂ© d’une dĂ©tection active de l’emplacement de la charge et le contrĂŽle d’alimentation. Notre approche permet Ă  cette surface d’alimentation unique de fournir une efficacitĂ© de transfert de puissance (PTE) de 69% et une puissance dĂ©livrĂ©e Ă  la charge (PDL) de 120 mW, pour une distance de sĂ©paration de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout Ă  l’intĂ©rieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une Ă©tape critique avant d’utiliser un dispositif implantable chez les humains consiste Ă  vĂ©rifier ses fonctionnalitĂ©s sur des sujets animaux. Par consĂ©quent, la chambre d’énergie sans fil conçue sera utilisĂ©e afin de caractĂ©riser les performances d’ une interface sans fil de transmisison de donnĂ©es dans un environnement rĂ©aliste in vivo avec positionement libre. Un Ă©metteur-rĂ©cepteur full-duplex (FDT) entiĂšrement intĂ©grĂ© qui se caractĂ©rise par sa faible puissance est conçu pour rĂ©aliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des dĂ©bits asymĂ©triques: des taux de tramnsmission plus Ă©levĂ©s sont nĂ©cessaires pour l’enregistrement Ă©lectrophysiologique multicanal (signaux de liaison montante) alors que les taux moins Ă©levĂ©s sont utilisĂ©s pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le rĂ©cepteur (RX) se partagent une seule antenne afin de rĂ©duire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basĂ©e sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et MĂ©dicale) de frĂ©quence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grĂące Ă  1) la mise en forme les impulsions Ă©mises dans le spectre UWB non rĂ©glementĂ©e (3.1-7 GHz), et 2) le filtrage espace-efficace (Ă©vitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur Ă  faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par dĂ©placement de phase (BPSK) Ă  seulement 10.8 pJ / bits. Le FDT proposĂ© permet d’atteindre 500 Mbps de dĂ©bit de donnĂ©es en lien montant et 100 Mbps de dĂ©bit de donnĂ©es de lien descendant. Il est entiĂšrement intĂ©grĂ© dans un procĂ©dĂ© TSMC CMOS 0.18 um standard et possĂšde une taille totale de 0.8 mm2. La consommation totale d’énergie mesurĂ©e est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 ÎŒW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystĂšmes intĂ©grĂ©s implantables pour Ă©tudier l’activitĂ© cĂ©rĂ©brale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le systĂšme nerveux central dans les paradigmes Ă©lectriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour dĂ©couvrir de nouveaux mĂ©dicaments et thĂ©rapies contre des troubles neurologiques comme l’épilepsie, la dĂ©pression et la maladie de Parkinson. Puisque les systĂšmes implantables ne peuvent pas utiliser une batterie ayant une grande capacitĂ© en tant que source d’énergie primaire dans des expĂ©riences Ă  long terme, la consommation d’énergie du dispositif implantable est l’un des principaux dĂ©fis de ces conceptions. La premiĂšre partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de dĂ©calage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas Ă  haute vitesse en utilisant une trĂšs faible puissance et une petite zone de silicium, ce qui le rend idĂ©al pour les applications de faible puissance. Le circuit proposĂ© introduit une nouvelle topologie de dĂ©caleur de niveau de tension utilisant un condensateur de dĂ©calage de niveau pour augmenter la plage de tensions de conversion, tout en rĂ©duisant considĂ©rablement le retard de conversion. Le circuit proposĂ© atteint un dĂ©lai de propagation plus court et une zone de silicium plus petite pour une frĂ©quence de fonctionnement et une consommation d’énergie donnĂ©e par rapport Ă  d’autres solutions de circuit. Les rĂ©sultats de mesure sont prĂ©sentĂ©s pour le circuit proposĂ© fabriquĂ© dans un processus CMOS TSMC de 0,18- mm. Le circuit prĂ©sentĂ© peut convertir une large gamme de tensions d’entrĂ©e de 330 mV Ă  1,8 V et fonctionner sur une plage de frĂ©quence de 100 Hz Ă  100 MHz. Il a un dĂ©lai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrĂ©e de 0,4 V, Ă  une frĂ©quence de 500 kHz, surpassant les conceptions prĂ©cĂ©dentes. La deuxiĂšme partie de cette recherche comprend nos systĂšmes de transfert d’énergie sans fil proposĂ© pour les applications optogĂ©nĂ©tiques. L’optogĂ©nĂ©tique est la combinaison de la mĂ©thode gĂ©nĂ©tique et optique d’excitation, d’enregistrement et de contrĂŽle des neurones biologiques. Ce systĂšme combine plusieurs technologies telles que les MEMS et la microĂ©lectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs Ă©lectriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacitĂ© comme source d’énergie.Notre premiĂšre contribution dans la deuxiĂšme partie fournit un systĂšme de cage domestique intelligent basĂ© sur des barrettes multi-bobines superposĂ©es Ă  travers un rĂ©cepteur multicellulaire implantable mince de taille 1×1 cm2, implantĂ© sous le cuir chevelu d’une souris de laboratoire, et unitĂ© de gestion de l’alimentation intĂ©grĂ©e. Ce systĂšme inductif est conçu pour fournir jusqu’à 35,5 mW de puissance dĂ©livrĂ©e Ă  un Ă©metteur-rĂ©cepteur full duplex de faible puissance entiĂšrement intĂ©grĂ© pour prendre en charge des implants neuronaux Ă  haute densitĂ© et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large Ă  impulsions radio basĂ©e sur des approches de combinaison, et le rĂ©cepteur (RX) utilise une topologie Ă  bande Ă©troite Ă  incrĂ©mentation de 2,4 GHz. L’émetteur-rĂ©cepteur proposĂ© fournit un dĂ©bit de donnĂ©es de liaison montante TX Ă  500 Mbits/s double et un dĂ©bit de donnĂ©es de liaison descendante RX Ă  100 Mbits/s, et est entiĂšrement intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut ĂȘtre dĂ©livrĂ©e Ă  partir d’un signal de porteuse de 13,56-MHz avec une efficacitĂ© globale de transfert de puissance supĂ©rieure Ă  5% sur une distance de sĂ©paration allant de 3 cm Ă  5 cm. Notre deuxiĂšme contribution dans les systĂšmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entiĂšrement sans fil afin de permettre des expĂ©riences optogĂ©nĂ©tiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau rĂ©seau hybride de transmetteurs de puissance (TX) et des rĂ©sonateurs multi-bobines segmentĂ©s pour atteindre une efficacitĂ© de transmission de puissance Ă©levĂ©e (PTE) et dĂ©livrer une puissance Ă©levĂ©e sur des distances aussi Ă©levĂ©es que 20 cm. Le rĂ©cepteur de puissance Ă  bobines multiples (RX) utilise une bobine RX d’un diamĂštre de 1 cm et une bobine de rĂ©sonateur d’un diamĂštre de 1,5 cm. L’efficacitĂ© moyenne du transfert de puissance WPT est de 29, 4%, Ă  une distance nominale de 7 cm, pour une frĂ©quence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut dĂ©livrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm a Ă©tĂ© conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de tempĂ©rature, Ă©metteur-rĂ©cepteur et unitĂ© de gestion de l’alimentation (PMU). Ce circuit est alimentĂ© Ă  l’intĂ©rieur de la cage du WPT Ă  l’aide d’une bobine rĂ©ceptrice d’un diamĂštre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions rĂ©gulĂ©es de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le systĂšme sur une puce. Notre derniĂšre contribution est un systĂšme WPT insensible aux dĂ©salignements angulaires pour alimenter un headstage pour des applications optogĂ©nĂ©tiques qui a Ă©tĂ© prĂ©cĂ©demment proposĂ© par le Laboratoire de MicrosystĂšmes BiomĂ©dicaux (BioML-UL) Ă  ULAVAL. Ce systĂšme est la version Ă©tendue de notre deuxiĂšme contribution aux systĂšmes de collecte d’énergie.Dans la version mise Ă  jour, un rĂ©cepteur de puissance multi-bobines utilise une bobine RX d’un diamĂštre de 1,0 cm et une nouvelle bobine de rĂ©sonateur fendu d’un diamĂštre de 1,5 cm, qui rĂ©siste aux dĂ©fauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la derniĂšre version, 4 rĂ©sonateurs sont utilisĂ©s cĂŽtĂ© TX. De plus, grĂące Ă  la forme et Ă  la position de la bobine de rĂ©pĂ©teur L3 du cĂŽtĂ© du rĂ©cepteur, la liaison rĂ©sonnante hybride prĂ©sentĂ©e peut correctement alimenter la tĂȘte sans interruption causĂ©e par le dĂ©salignement angulaire dans toute la cage de la maison. Chaque 3 tours du rĂ©pĂ©teur RX a Ă©tĂ© enveloppĂ© avec un diamĂštre de 1,5 cm, sous diffĂ©rents angles par rapport Ă  la bobine rĂ©ceptrice. Les rĂ©sultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La mĂ©thode proposĂ©e peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogĂ©nĂ©tiques. De plus, dans cette version, la performance du systĂšme est dĂ©montrĂ©e dans une expĂ©rience in-vivo avec une souris ChR2 en mouvement libre qui est la premiĂšre expĂ©rience optogĂ©nĂ©tique sans fil et sans batterie rapportĂ©e avec enregistrement Ă©lectrophysiologique simultanĂ© et stimulation optogĂ©nĂ©tique. L’activitĂ© Ă©lectrophysiologique a Ă©tĂ© enregistrĂ©e aprĂšs une stimulation optogĂ©nĂ©tique dans le Cortex Cingulaire AntĂ©rieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-ÎŒm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-ÎŒm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications
    • 

    corecore