20 research outputs found

    A tool for the automatic and manual annotation of biomedical documents

    Get PDF
    The techniques developed within the field of Biomedical Text Mining (BioTM) have been mainly tested and evaluated over a set of known corpora built by a few researchers with a specific goal or to support scientific competitions. The generalized use of BioTM software therefore requires that an enlarged set of corpora is made available covering a wider range of biomedical research topics. This work proposes a software tool that facilitates the task of building a BioTM corpus by providing a userfriendly and interoperable tool that allows both automatic and manual annotation of biomedical documents (supporting both abstracts and full text). This tool is also integrated in a more comprehensive BioTM framework.Fundação para a Ciência e a Tecnologia (FCT

    Acronym recognition and processing in 22 languages

    Full text link
    We are presenting work on recognising acronyms of the form Long-Form (Short-Form) such as "International Monetary Fund (IMF)" in millions of news articles in twenty-two languages, as part of our more general effort to recognise entities and their variants in news text and to use them for the automatic analysis of the news, including the linking of related news across languages. We show how the acronym recognition patterns, initially developed for medical terms, needed to be adapted to the more general news domain and we present evaluation results. We describe our effort to automatically merge the numerous long-form variants referring to the same short-form, while keeping non-related long-forms separate. Finally, we provide extensive statistics on the frequency and the distribution of short-form/long-form pairs across languages

    Word add-in for ontology recognition: semantic enrichment of scientific literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles.</p> <p>Results</p> <p>The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at <url>http://www.codeplex.com/UCSDBioLit</url>.</p> <p>Conclusions</p> <p>The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.</p

    A comparison study on algorithms of detecting long forms for short forms in biomedical text

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>With more and more research dedicated to literature mining in the biomedical domain, more and more systems are available for people to choose from when building literature mining applications. In this study, we focus on one specific kind of literature mining task, i.e., detecting definitions of acronyms, abbreviations, and symbols in biomedical text. We denote acronyms, abbreviations, and symbols as short forms (SFs) and their corresponding definitions as long forms (LFs). The study was designed to answer the following questions; i) how well a system performs in detecting LFs from novel text, ii) what the coverage is for various terminological knowledge bases in including SFs as synonyms of their LFs, and iii) how to combine results from various SF knowledge bases.</p> <p>Method</p> <p>We evaluated the following three publicly available detection systems in detecting LFs for SFs: i) a handcrafted pattern/rule based system by Ao and Takagi, ALICE, ii) a machine learning system by Chang et al., and iii) a simple alignment-based program by Schwartz and Hearst. In addition, we investigated the conceptual coverage of two terminological knowledge bases: i) the UMLS (the Unified Medical Language System), and ii) the BioThesaurus (a thesaurus of names for all UniProt protein records). We also implemented a web interface that provides a virtual integration of various SF knowledge bases.</p> <p>Results</p> <p>We found that detection systems agree with each other on most cases, and the existing terminological knowledge bases have a good coverage of synonymous relationship for frequently defined LFs. The web interface allows people to detect SF definitions from text and to search several SF knowledge bases.</p> <p>Availability</p> <p>The web site is <url>http://gauss.dbb.georgetown.edu/liblab/SFThesaurus</url>.</p

    Building a high-quality sense inventory for improved abbreviation disambiguation

    Get PDF
    Motivation: The ultimate goal of abbreviation management is to disambiguate every occurrence of an abbreviation into its expanded form (concept or sense). To collect expanded forms for abbreviations, previous studies have recognized abbreviations and their expanded forms in parenthetical expressions of bio-medical texts. However, expanded forms extracted by abbreviation recognition are mixtures of concepts/senses and their term variations. Consequently, a list of expanded forms should be structured into a sense inventory, which provides possible concepts or senses for abbreviation disambiguation

    MBA: a literature mining system for extracting biomedical abbreviations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exploding growth of the biomedical literature presents many challenges for biological researchers. One such challenge is from the use of a great deal of abbreviations. Extracting abbreviations and their definitions accurately is very helpful to biologists and also facilitates biomedical text analysis. Existing approaches fall into four broad categories: rule based, machine learning based, text alignment based and statistically based. State of the art methods either focus exclusively on acronym-type abbreviations, or could not recognize rare abbreviations. We propose a systematic method to extract abbreviations effectively. At first a scoring method is used to classify the abbreviations into acronym-type and non-acronym-type abbreviations, and then their corresponding definitions are identified by two different methods: text alignment algorithm for the former, statistical method for the latter.</p> <p>Results</p> <p>A literature mining system MBA was constructed to extract both acronym-type and non-acronym-type abbreviations. An abbreviation-tagged literature corpus, called Medstract gold standard corpus, was used to evaluate the system. MBA achieved a recall of 88% at the precision of 91% on the Medstract gold-standard EVALUATION Corpus.</p> <p>Conclusion</p> <p>We present a new literature mining system MBA for extracting biomedical abbreviations. Our evaluation demonstrates that the MBA system performs better than the others. It can identify the definition of not only acronym-type abbreviations including a little irregular acronym-type abbreviations (e.g., <CNS1, cyclophilin seven suppressor>), but also non-acronym-type abbreviations (e.g., <Fas, CD95>).</p

    NetiNeti : Discovery of Scientific Names from Text Using Machine Learning Methods Figure 1

    Get PDF
    Figure 1 demonstrates a series of training experiments with the Naïve Bayes classifier using different neighborhoods for contextual features, different sizes of positive and negative training examples and evaluated the resulting classifiers with our annotated gold standard corpus. The data sets are the results of running NetiNeti on subset of 136 PubMedCentral tagged open access articles and with no stop list.A scientific name for an organism can be associated with almost all biological data. Name identification is an important step in many text mining tasks aiming to extract useful information from biological, biomedical and biodiversity text sources. A scientific name acts as an important metadata element to link biological information.We present NetiNeti, a machine learning based approach for identification and discovery of scientific names. The system implementing the approach can be accessed at http://namefinding.ubio.org we present the comparison results of various machine learning algorithms on our annotated corpus. Naïve Bayes and Maximum Entropy with Generalized Iterative Scaling (GIS) parameter estimation are the top two performing algorithms

    Named Entity Recognition for Bacterial Type IV Secretion Systems

    Get PDF
    Research on specialized biological systems is often hampered by a lack of consistent terminology, especially across species. In bacterial Type IV secretion systems genes within one set of orthologs may have over a dozen different names. Classifying research publications based on biological processes, cellular components, molecular functions, and microorganism species should improve the precision and recall of literature searches allowing researchers to keep up with the exponentially growing literature, through resources such as the Pathosystems Resource Integration Center (PATRIC, patricbrc.org). We developed named entity recognition (NER) tools for four entities related to Type IV secretion systems: 1) bacteria names, 2) biological processes, 3) molecular functions, and 4) cellular components. These four entities are important to pathogenesis and virulence research but have received less attention than other entities, e.g., genes and proteins. Based on an annotated corpus, large domain terminological resources, and machine learning techniques, we developed recognizers for these entities. High accuracy rates (>80%) are achieved for bacteria, biological processes, and molecular function. Contrastive experiments highlighted the effectiveness of alternate recognition strategies; results of term extraction on contrasting document sets demonstrated the utility of these classes for identifying T4SS-related documents

    LINNAEUS: A species name identification system for biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles.</p> <p>Results</p> <p>In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton) to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers.</p> <p>Conclusions</p> <p>LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at <url>http://linnaeus.sourceforge.net/</url>.</p

    Linking genes to literature: text mining, information extraction, and retrieval applications for biology

    Get PDF
    Efficient access to information contained in online scientific literature collections is essential for life science research, playing a crucial role from the initial stage of experiment planning to the final interpretation and communication of the results. The biological literature also constitutes the main information source for manual literature curation used by expert-curated databases. Following the increasing popularity of web-based applications for analyzing biological data, new text-mining and information extraction strategies are being implemented. These systems exploit existing regularities in natural language to extract biologically relevant information from electronic texts automatically. The aim of the BioCreative challenge is to promote the development of such tools and to provide insight into their performance. This review presents a general introduction to the main characteristics and applications of currently available text-mining systems for life sciences in terms of the following: the type of biological information demands being addressed; the level of information granularity of both user queries and results; and the features and methods commonly exploited by these applications. The current trend in biomedical text mining points toward an increasing diversification in terms of application types and techniques, together with integration of domain-specific resources such as ontologies. Additional descriptions of some of the systems discussed here are available on the internet
    corecore