21,419 research outputs found

    Enabling Self-aware Smart Buildings by Augmented Reality

    Full text link
    Conventional HVAC control systems are usually incognizant of the physical structures and materials of buildings. These systems merely follow pre-set HVAC control logic based on abstract building thermal response models, which are rough approximations to true physical models, ignoring dynamic spatial variations in built environments. To enable more accurate and responsive HVAC control, this paper introduces the notion of "self-aware" smart buildings, such that buildings are able to explicitly construct physical models of themselves (e.g., incorporating building structures and materials, and thermal flow dynamics). The question is how to enable self-aware buildings that automatically acquire dynamic knowledge of themselves. This paper presents a novel approach using "augmented reality". The extensive user-environment interactions in augmented reality not only can provide intuitive user interfaces for building systems, but also can capture the physical structures and possibly materials of buildings accurately to enable real-time building simulation and control. This paper presents a building system prototype incorporating augmented reality, and discusses its applications.Comment: This paper appears in ACM International Conference on Future Energy Systems (e-Energy), 201

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Immercity: a curation content application in Virtual and Augmented reality

    Full text link
    When working with emergent and appealing technologies as Virtual Reality, Mixed Reality and Augmented Reality, the issue of definitions appear very often. Indeed, our experience with various publics allows us to notice that technology definitions pose ambiguity and representation problems for informed as well as novice users. In this paper we present Immercity, a content curation system designed in the context of a collaboration between the University of Montpellier and CapGemi-ni, to deliver a technology watch. It is also used as a testbed for our experiences with Virtual, Mixed and Augmented reality to explore new interaction techniques and devices, artificial intelligence integration, visual affordances, performance , etc. But another, very interesting goal appeared: use Immercity to communicate about Virtual, Mixed and Augmented Reality by using them as a support

    PerfVis: Pervasive Visualization in Immersive AugmentedReality for Performance Awareness

    Full text link
    Developers are usually unaware of the impact of code changes to the performance of software systems. Although developers can analyze the performance of a system by executing, for instance, a performance test to compare the performance of two consecutive versions of the system, changing from a programming task to a testing task would disrupt the development flow. In this paper, we propose the use of a city visualization that dynamically provides developers with a pervasive view of the continuous performance of a system. We use an immersive augmented reality device (Microsoft HoloLens) to display our visualization and extend the integrated development environment on a computer screen to use the physical space. We report on technical details of the design and implementation of our visualization tool, and discuss early feedback that we collected of its usability. Our investigation explores a new visual metaphor to support the exploration and analysis of possibly very large and multidimensional performance data. Our initial result indicates that the city metaphor can be adequate to analyze dynamic performance data on a large and non-trivial software system.Comment: ICPE'19 vision, 4 pages, 2 figure, conferenc

    Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment

    Full text link
    UAVs have been widely used in visual inspections of buildings, bridges and other structures. In either outdoor autonomous or semi-autonomous flights missions strong GPS signal is vital for UAV to locate its own positions. However, strong GPS signal is not always available, and it can degrade or fully loss underneath large structures or close to power lines, which can cause serious control issues or even UAV crashes. Such limitations highly restricted the applications of UAV as a routine inspection tool in various domains. In this paper a vision-model-based real-time self-positioning method is proposed to support autonomous aerial inspection without the need of GPS support. Compared to other localization methods that requires additional onboard sensors, the proposed method uses a single camera to continuously estimate the inflight poses of UAV. Each step of the proposed method is discussed in detail, and its performance is tested through an indoor test case.Comment: 8 pages, 5 figures, submitted to i3ce 201

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO
    • …
    corecore