1,574 research outputs found

    Buffer-Aided Relaying with Adaptive Link Selection - Fixed and Mixed Rate Transmission

    Full text link
    We consider a simple network consisting of a source, a half-duplex DF relay with a buffer, and a destination. We assume that the direct source-destination link is not available and all links undergo fading. We propose two new buffer-aided relaying schemes. In the first scheme, neither the source nor the relay have CSIT, and consequently, both nodes are forced to transmit with fixed rates. In contrast, in the second scheme, the source does not have CSIT and transmits with fixed rate but the relay has CSIT and adapts its transmission rate accordingly. In the absence of delay constraints, for both fixed rate and mixed rate transmission, we derive the throughput-optimal buffer-aided relaying protocols which select either the source or the relay for transmission based on the instantaneous SNRs of the source-relay and the relay-destination links. In addition, for the delay constrained case, we develop buffer-aided relaying protocols that achieve a predefined average delay. Compared to conventional relaying protocols, which select the transmitting node according to a predefined schedule independent of the link instantaneous SNRs, the proposed buffer-aided protocols with adaptive link selection achieve large performance gains. In particular, for fixed rate transmission, we show that the proposed protocol achieves a diversity gain of two as long as an average delay of more than three time slots can be afforded. Furthermore, for mixed rate transmission with an average delay of ETE{T} time slots, a multiplexing gain of r=1βˆ’1/(2ET)r=1-1/(2E{T}) is achieved. Hence, for mixed rate transmission, for sufficiently large average delays, buffer-aided half-duplex relaying with and without adaptive link selection does not suffer from a multiplexing gain loss compared to full-duplex relaying.Comment: IEEE Transactions on Information Theory. (Published

    Power Allocation for Conventional and Buffer-Aided Link Adaptive Relaying Systems with Energy Harvesting Nodes

    Full text link
    Energy harvesting (EH) nodes can play an important role in cooperative communication systems which do not have a continuous power supply. In this paper, we consider the optimization of conventional and buffer-aided link adaptive EH relaying systems, where an EH source communicates with the destination via an EH decode-and-forward relay. In conventional relaying, source and relay transmit signals in consecutive time slots whereas in buffer-aided link adaptive relaying, the state of the source-relay and relay-destination channels determines whether the source or the relay is selected for transmission. Our objective is to maximize the system throughput over a finite number of transmission time slots for both relaying protocols. In case of conventional relaying, we propose an offline and several online joint source and relay transmit power allocation schemes. For offline power allocation, we formulate an optimization problem which can be solved optimally. For the online case, we propose a dynamic programming (DP) approach to compute the optimal online transmit power. To alleviate the complexity inherent to DP, we also propose several suboptimal online power allocation schemes. For buffer-aided link adaptive relaying, we show that the joint offline optimization of the source and relay transmit powers along with the link selection results in a mixed integer non-linear program which we solve optimally using the spatial branch-and-bound method. We also propose an efficient online power allocation scheme and a naive online power allocation scheme for buffer-aided link adaptive relaying. Our results show that link adaptive relaying provides performance improvement over conventional relaying at the expense of a higher computational complexity.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore