423 research outputs found

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    EBDP BUFFER SIZING STRATEGY 802.11 BASED WLANS

    Get PDF
    In this paper we present wired routers, for whom the sizing of buffers is an active research topic. The classical rule of thumb for sizing wired buffers is to set buffer sizes to be the product of the bandwidth and the average delay of the flows utilizing this link, namely the Bandwidth-Delay Product (BDP) rule. Surprisingly, however the sizing of buffers in wireless networks (especially those based on 802.11/802.11e) appears to have received very little attention within the networking community. Exceptions include the recent work in relating to buffer sizing for voice traffic in 802.11e WLANs, work in which considers the impact of buffer sizing on TCP upload/download fairness, and work in which is related to 802.11e parameter settings

    Improving Performance for CSMA/CA Based Wireless Networks

    Get PDF
    Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based wireless networks are becoming increasingly ubiquitous. With the aim of supporting rich multimedia applications such as high-definition television (HDTV, 20Mbps) and DVD (9.8Mbps), one of the technology trends is towards increasingly higher bandwidth. Some recent IEEE 802.11n proposals seek to provide PHY rates of up to 600 Mbps. In addition to increasing bandwidth, there is also strong interest in extending the coverage of CSMA/CA based wireless networks. One solution is to relay traffic via multiple intermediate stations if the sender and the receiver are far apart. The so called “mesh” networks based on this relay-based approach, if properly designed, may feature both “high speed” and “large coverage” at the same time. This thesis focusses on MAC layer performance enhancements in CSMA/CA based networks in this context. Firstly, we observe that higher PHY rates do not necessarily translate into corresponding increases in MAC layer throughput due to the overhead of the CSMA/CA based MAC/PHY layers. To mitigate the overhead, we propose a novel MAC scheme whereby transported information is partially acknowledged and retransmitted. Theoretical analysis and extensive simulations show that the proposed MAC approach can achieve high efficiency (low MAC overhead) for a wide range of channel variations and realistic traffic types. Secondly, we investigate the close interaction between the MAC layer and the buffer above it to improve performance for real world traffic such as TCP. Surprisingly, the issue of buffer sizing in 802.11 wireless networks has received little attention in the literature yet it poses fundamentally new challenges compared to buffer sizing in wired networks. We propose a new adaptive buffer sizing approach for 802.11e WLANs that maintains a high level of link utilisation, while minimising queueing delay. Thirdly, we highlight that gross unfairness can exist between competing flows in multihop mesh networks even if we assume that orthogonal channels are used in neighbouring hops. That is, even without inter-channel interference and hidden terminals, multi-hop mesh networks which aim to offer a both “high speed” and “large coverage” are not achieved. We propose the use of 802.11e’s TXOP mechanism to restore/enfore fairness. The proposed approach is implementable using off-the-shelf devices and fully decentralised (requires no message passing)

    Spurious TCP Timeouts in 802.11 Networks

    Get PDF
    In this paper, we investigate spurious TCP timeouts in 802.11 wireless networks. Though timeouts can be a problem for uploads from an 802.11 network, these timeouts are not spurious but are caused by a bottleneck at the access point. Once this bottleneck is removed, we find that spurious timeouts are rare, even in the face of large changes in numbers of active stations or PHY rate

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    An analytical model for performance evaluation of multimedia applications over EDCA in an IEEE 802.11e WLAN

    Get PDF
    We extend the modeling heuristic of (Harsha et al. 2006. In IEEE IWQoS '06, pp 178-187) to evaluate the performance of an IEEE 802.11e infrastructure network carrying packet telephone calls, streaming video sessions and TCP controlled file downloads, using Enhanced Distributed Channel Access (EDCA). We identify the time boundaries of activities on the channel (called channel slot boundaries) and derive a Markov Renewal Process of the contending nodes on these epochs. This is achieved by the use of attempt probabilities of the contending nodes as those obtained from the saturation fixed point analysis of (Ramaiyan et al. 2005. In Proceedings ACM Sigmetrics, '05. Journal version accepted for publication in IEEE TON). Regenerative analysis on this MRP yields the desired steady state performance measures. We then use the MRP model to develop an effective bandwidth approach for obtaining a bound on the size of the buffer required at the video queue of the AP, such that the streaming video packet loss probability is kept to less than 1%. The results obtained match well with simulations using the network simulator, ns-2. We find that, with the default IEEE 802.11e EDCA parameters for access categories AC 1, AC 2 and AC 3, the voice call capacity decreases if even one streaming video session and one TCP file download are initiated by some wireless station. Subsequently, reducing the voice calls increases the video downlink stream throughput by 0.38 Mbps and file download capacity by 0.14 Mbps, for every voice call (for the 11 Mbps PHY). We find that a buffer size of 75KB is sufficient to ensure that the video packet loss probability at the QAP is within 1%
    • …
    corecore