295 research outputs found

    Budgeted Multi-Armed Bandits with Asymmetric Confidence Intervals

    Full text link
    We study the stochastic Budgeted Multi-Armed Bandit (MAB) problem, where a player chooses from KK arms with unknown expected rewards and costs. The goal is to maximize the total reward under a budget constraint. A player thus seeks to choose the arm with the highest reward-cost ratio as often as possible. Current state-of-the-art policies for this problem have several issues, which we illustrate. To overcome them, we propose a new upper confidence bound (UCB) sampling policy, ω\omega-UCB, that uses asymmetric confidence intervals. These intervals scale with the distance between the sample mean and the bounds of a random variable, yielding a more accurate and tight estimation of the reward-cost ratio compared to our competitors. We show that our approach has logarithmic regret and consistently outperforms existing policies in synthetic and real settings

    Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits

    Get PDF
    We study a generalization of the multi-armed bandit problem with multiple plays where there is a cost associated with pulling each arm and the agent has a budget at each time that dictates how much she can expect to spend. We derive an asymptotic regret lower bound for any uniformly efficient algorithm in our setting. We then study a variant of Thompson sampling for Bernoulli rewards and a variant of KL-UCB for both single-parameter exponential families and bounded, finitely supported rewards. We show these algorithms are asymptotically optimal, both in rateand leading problem-dependent constants, including in the thick margin setting where multiple arms fall on the decision boundary

    Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

    Get PDF
    We present a new algorithm, truncated variance reduction (TruVaR), that treats Bayesian optimization (BO) and level-set estimation (LSE) with Gaussian processes in a unified fashion. The algorithm greedily shrinks a sum of truncated variances within a set of potential maximizers (BO) or unclassified points (LSE), which is updated based on confidence bounds. TruVaR is effective in several important settings that are typically non-trivial to incorporate into myopic algorithms, including pointwise costs and heteroscedastic noise. We provide a general theoretical guarantee for TruVaR covering these aspects, and use it to recover and strengthen existing results on BO and LSE. Moreover, we provide a new result for a setting where one can select from a number of noise levels having associated costs. We demonstrate the effectiveness of the algorithm on both synthetic and real-world data sets.Comment: Accepted to NIPS 201

    Incentivizing Exploration with Heterogeneous Value of Money

    Full text link
    Recently, Frazier et al. proposed a natural model for crowdsourced exploration of different a priori unknown options: a principal is interested in the long-term welfare of a population of agents who arrive one by one in a multi-armed bandit setting. However, each agent is myopic, so in order to incentivize him to explore options with better long-term prospects, the principal must offer the agent money. Frazier et al. showed that a simple class of policies called time-expanded are optimal in the worst case, and characterized their budget-reward tradeoff. The previous work assumed that all agents are equally and uniformly susceptible to financial incentives. In reality, agents may have different utility for money. We therefore extend the model of Frazier et al. to allow agents that have heterogeneous and non-linear utilities for money. The principal is informed of the agent's tradeoff via a signal that could be more or less informative. Our main result is to show that a convex program can be used to derive a signal-dependent time-expanded policy which achieves the best possible Lagrangian reward in the worst case. The worst-case guarantee is matched by so-called "Diamonds in the Rough" instances; the proof that the guarantees match is based on showing that two different convex programs have the same optimal solution for these specific instances. These results also extend to the budgeted case as in Frazier et al. We also show that the optimal policy is monotone with respect to information, i.e., the approximation ratio of the optimal policy improves as the signals become more informative.Comment: WINE 201
    • …
    corecore