34 research outputs found

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Revenue Maximization and Ex-Post Budget Constraints

    Full text link
    We consider the problem of a revenue-maximizing seller with m items for sale to n additive bidders with hard budget constraints, assuming that the seller has some prior distribution over bidder values and budgets. The prior may be correlated across items and budgets of the same bidder, but is assumed independent across bidders. We target mechanisms that are Bayesian Incentive Compatible, but that are ex-post Individually Rational and ex-post budget respecting. Virtually no such mechanisms are known that satisfy all these conditions and guarantee any revenue approximation, even with just a single item. We provide a computationally efficient mechanism that is a 33-approximation with respect to all BIC, ex-post IR, and ex-post budget respecting mechanisms. Note that the problem is NP-hard to approximate better than a factor of 16/15, even in the case where the prior is a point mass \cite{ChakrabartyGoel}. We further characterize the optimal mechanism in this setting, showing that it can be interpreted as a distribution over virtual welfare maximizers. We prove our results by making use of a black-box reduction from mechanism to algorithm design developed by \cite{CaiDW13b}. Our main technical contribution is a computationally efficient 33-approximation algorithm for the algorithmic problem that results by an application of their framework to this problem. The algorithmic problem has a mixed-sign objective and is NP-hard to optimize exactly, so it is surprising that a computationally efficient approximation is possible at all. In the case of a single item (m=1m=1), the algorithmic problem can be solved exactly via exhaustive search, leading to a computationally efficient exact algorithm and a stronger characterization of the optimal mechanism as a distribution over virtual value maximizers

    Optimal Pricing Is Hard

    Get PDF
    We show that computing the revenue-optimal deterministic auction in unit-demand single-buyer Bayesian settings, i.e. the optimal item-pricing, is computationally hard even in single-item settings where the buyer’s value distribution is a sum of independently distributed attributes, or multi-item settings where the buyer’s values for the items are independent. We also show that it is intractable to optimally price the grand bundle of multiple items for an additive bidder whose values for the items are independent. These difficulties stem from implicit definitions of a value distribution. We provide three instances of how different properties of implicit distributions can lead to intractability: the first is a #P-hardness proof, while the remaining two are reductions from the SQRT-SUM problem of Garey, Graham, and Johnson [14]. While simple pricing schemes can oftentimes approximate the best scheme in revenue, they can have drastically different underlying structure. We argue therefore that either the specification of the input distribution must be highly restricted in format, or it is necessary for the goal to be mere approximation to the optimal scheme’s revenue instead of computing properties of the scheme itself.Microsoft Research (Fellowship)Alfred P. Sloan Foundation (Fellowship)National Science Foundation (U.S.) (CAREER Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491)Hertz Foundation (Daniel Stroock Fellowship

    Budget Feasible Mechanism Design: From Prior-Free to Bayesian

    Full text link
    Budget feasible mechanism design studies procurement combinatorial auctions where the sellers have private costs to produce items, and the buyer(auctioneer) aims to maximize a social valuation function on subsets of items, under the budget constraint on the total payment. One of the most important questions in the field is "which valuation domains admit truthful budget feasible mechanisms with `small' approximations (compared to the social optimum)?" Singer showed that additive and submodular functions have such constant approximations. Recently, Dobzinski, Papadimitriou, and Singer gave an O(log^2 n)-approximation mechanism for subadditive functions; they also remarked that: "A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive functions." We address this question from two viewpoints: prior-free worst case analysis and Bayesian analysis. For the prior-free framework, we use an LP that describes the fractional cover of the valuation function; it is also connected to the concept of approximate core in cooperative game theory. We provide an O(I)-approximation mechanism for subadditive functions, via the worst case integrality gap I of LP. This implies an O(log n)-approximation for subadditive valuations, O(1)-approximation for XOS valuations, and for valuations with a constant I. XOS valuations are an important class of functions that lie between submodular and subadditive classes. We give another polynomial time O(log n/loglog n) sub-logarithmic approximation mechanism for subadditive valuations. For the Bayesian framework, we provide a constant approximation mechanism for all subadditive functions, using the above prior-free mechanism for XOS valuations as a subroutine. Our mechanism allows correlations in the distribution of private information and is universally truthful.Comment: to appear in STOC 201
    corecore