32 research outputs found

    Coloring Graphs having Few Colorings over Path Decompositions

    Full text link
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (kϵ)pw(G)poly(n)(k-\epsilon)^{\operatorname{pw}(G)}\operatorname{poly}(n) time algorithm for deciding if an nn-vertex graph GG with pathwidth pw(G)\operatorname{pw}(G) admits a proper vertex coloring with kk colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k>Δ/2+1k>\lfloor \Delta/2 \rfloor + 1, where Δ\Delta is the maximum degree in the graph GG, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph GG along with a path decomposition of GG with pathwidth pw(G)\operatorname{pw}(G) runs in (Δ/2+1)pw(G)poly(n)s(\lfloor \Delta/2 \rfloor + 1)^{\operatorname{pw}(G)}\operatorname{poly}(n)s time, that distinguishes between kk-colorable graphs having at most ss proper kk-colorings and non-kk-colorable graphs. We also show how to obtain a kk-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than kk at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is kk-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few kk-colorings. Yet every non-kk-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.Comment: Strengthened result from uniquely kk-colorable graphs to graphs with few kk-colorings. Also improved running tim

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric
    corecore