414 research outputs found

    A study of multiloop networks

    Get PDF
    Multiloop networks is a family of network topologies which is an extension of the ring topology. In this thesis we study the structural properties of bipartite double loop networks using the plane tessellation technique. We also study the problem of broadcasting in the bipartite double loop networks and in triple loop networks. For the first kind of graphs we find that the broadcast time is d + 2 where d is the diameter of the graph. For the triple loop graphs, we give a d + 5 upper bound on the broadcast time by providing an algorithm that completes broadcasting in at most d + 5 time units. We also find a d + 2 lower bound for the optimal triple loop graphs, these are the graphs with maximum number of nodes given a diameter d . Finally we give an upper bound for the broadcast time of undirected Circulant (also called multiloop) graphs of degree 2 k which is d + 2 k -

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Full text link
    Recent results establish for 2-spin antiferromagnetic systems that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs (#BIS-hardness). We improve this hardness result by establishing it for bipartite graphs of maximum degree D. We first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. As a corollary, it is #BIS-hard to approximate the number of k-colorings on bipartite graphs of maximum degree D when k <= D/(2 ln D). The #BIS-hardness result for the ferromagnetic Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. We extend these connections to random regular graphs for all ferromagnetic models and establish the Bethe prediction for every ferromagnetic spin system on random regular graphs. We also prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing on random D-regular graphs at the critical temperature for large q.Comment: To appear in SIAM J. Computin

    Properties and Algorithms of the KCube Graphs

    Get PDF
    The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given

    Gossiping in chordal rings under the line model

    Get PDF
    The line model assumes long distance calls between non neighboring processors. In this sense, the line model is strongly related to circuit-switched networks, wormhole routing, optical networks supporting wavelength division multiplexing, ATM switching, and networks supporting connected mode routing protocols. Since the chordal rings are competitors of networks as meshes or tori because of theirs short diameter and bounded degree, it is of interest to ask whether they can support intensive communications (typically all-to-all) as efficiently as these networks. We propose polynomial algorithms to derive optimal or near optimal gossip protocols in the chordal ring

    Walks and games on graphs

    Get PDF
    Herrman, Rebekah Ph.D. The University of Memphis, May 2020. Walks and Games on Graphs. Major Professor: B\\u27ela Bollob\\u27as, Ph.D.Chapter 1 is joint work with Dr. Travis Humble and appears in the journal Physical Review A. In this work, we consider continuous-time quantum walks on dynamic graphs. Continuous-time quantum walks have been well studied on graphs that do not change as a function of time. We offer a mathematical formulation for how to express continuous-time quantum walks on graphs that can change in time, find a universal set of walks that can perform any operation, and use them to simulate basic quantum circuits. This work was supported in part by the Department of Energy Student Undergraduate Laboratory Internship and the National Science Foundation Mathematical Sciences Graduate Internship programs.The (t,r)(t,r) broadcast domination number of a graph GG, γt,r(G)\gamma_{t,r}(G), is a generalization of the domination number of a graph. In Chapter 2, we consider the (t,r)(t,r) broadcast domination number on graphs, specifically powers of cycles, powers of paths, and infinite grids. This work is joint with Peter van Hintum and has been submitted to the journal Discrete Applied Mathematics.Bridge-burning cops and robbers is a variant of the cops and robbers game on graphs in which the robber removes an edge from the graph once it is traversed. In Chapter 3, we study the maximum time it takes the cops to capture the robber in this variant. This is joint with Peter van Hintum and Dr. Stephen Smith.In Chapter 4, we study a variant of the chip-firing game called the \emph{diffusion game}. In the diffusion game, we begin with some integer labelling of the vertices of a graph, interpreted as a number of chips on each vertex, and for each subsequent step every vertex simultaneously fires a chip to each neighbour with fewer chips. In general, this could result in negative vertex labels. Long and Narayanan asked whether there exists an f(n)f(n) for each nn, such that whenever we have a graph on nn vertices and an initial allocation with at least f(n)f(n) chips on each vertex, then the number of chips on each vertex will remain non-negative. We answer their question in the affirmative, showing further that f(n)=n2f(n)=n-2 is the best possible bound. We also consider the existence of a similar bound g(d)g(d) for each dd, where dd is the maximum degree of the graph. This work is joint with Andrew Carlotti and has been submitted to the journal Discrete Mathematics.In Chapter 5, we consider the eternal game chromatic number of random graphs. The eternal graph colouring problem, recently introduced by Klostermeyer and Mendoza \cite{klostermeyer}, is a version of the graph colouring game, where two players take turns properly colouring a graph. In this chapter, we show that with high probability χg(Gn,p)=(p2+o(1))n\chi_{g}^{\infty}(G_{n,p}) = (\frac{p}{2} + o(1))n for odd nn, and also for even nn when p=1kp=\frac{1}{k} for some kNk \in \N. This work is joint with Vojt\u{e}ch Dvo\u{r}\\u27ak and Peter van Hintum, and has been submitted to the European Journal of Combinatorics

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Heuristic Algorithms For Broadcasting In Cactus Graphs

    Get PDF
    Broadcasting is an information dissemination problem in a connected network, in which one node, called the originator, disseminates a message to all other nodes by placing a series of calls along the communication lines of the network. Once informed, the nodes aid the originator in distributing the message. Finding the broadcast time of a vertex in an arbitrary graph is NP-complete. The problem is solved polynomially only for a few classes of graphs. In this thesis, we study the broadcast problem in a class of graph called a Cactus Graph. A cactus graph is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle. We review broadcasting on subclasses of cactus graphs such as, the unicyclic graphs, necklace graphs, k-cycle graphs, 2-restricted cactus graphs and k-restricted cactus graphs. We then provide four heuristic algorithms that solves broadcasting on a k-cycle graph. A k-cycle graph is a collection of k cycles of arbitrary lengths all connected to a central vertex. Finally, we run simulations of these heuristic algorithms on different sized k-cycle graphs to compare and discuss the results
    corecore