1,544 research outputs found

    Routing in Mobile Ad-Hoc Networks using Social Tie Strengths and Mobility Plans

    Full text link
    We consider the problem of routing in a mobile ad-hoc network (MANET) for which the planned mobilities of the nodes are partially known a priori and the nodes travel in groups. This situation arises commonly in military and emergency response scenarios. Optimal routes are computed using the most reliable path principle in which the negative logarithm of a node pair's adjacency probability is used as a link weight metric. This probability is estimated using the mobility plan as well as dynamic information captured by table exchanges, including a measure of the social tie strength between nodes. The latter information is useful when nodes deviate from their plans or when the plans are inaccurate. We compare the proposed routing algorithm with the commonly-used optimized link state routing (OLSR) protocol in ns-3 simulations. As the OLSR protocol does not exploit the mobility plans, it relies on link state determination which suffers with increasing mobility. Our simulations show considerably better throughput performance with the proposed approach as compared with OLSR at the expense of increased overhead. However, in the high-throughput regime, the proposed approach outperforms OLSR in terms of both throughput and overhead

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)

    A Process Calculus for Dynamic Networks

    Get PDF
    In this paper we propose a process calculus framework for dynamic networks in which the network topology may change as computation proceeds. The proposed calculus allows one to abstract away from neighborhood-discovery computations and it contains features for broadcasting at multiple transmission ranges and for viewing networks at different levels of abstraction. We develop a theory of confluence for the calculus and we use the machinery developed towards the verification of a leader-election algorithm for mobile ad hoc networks

    Distributed Coverage Area Reporting for Wireless Sensor Networks

    Get PDF
    In order to efficiently deal with subscriptions or other location dependent information, it is key that the wireless sensor network informs the gateways what geographical area is serviced by which gateway. The gateways are then able to e.g. efficiently route subscriptions which are only valid in particular regions of the deployment. \ud \ud In our distributed approach of establishing a description of WSN coverage area per gateway, we let nodes keep track of the convex hull of the coverage area. In this way, gateways are efficiently informed of the service areas, while we limit the amount of information each node needs to store, transmit and receive
    • …
    corecore