139 research outputs found

    A Transition-Based Directed Acyclic Graph Parser for UCCA

    Full text link
    We present the first parser for UCCA, a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. To our knowledge, the conjunction of these formal properties is not supported by any existing parser. Our transition-based parser, which uses a novel transition set and features based on bidirectional LSTMs, has value not just for UCCA parsing: its ability to handle more general graph structures can inform the development of parsers for other semantic DAG structures, and in languages that frequently use discontinuous structures.Comment: 16 pages; Accepted as long paper at ACL201

    AMR Dependency Parsing with a Typed Semantic Algebra

    Full text link
    We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.Comment: This paper will be presented at ACL 2018 (see https://acl2018.org/programme/papers/

    Neural Semantic Parsing by Character-based Translation: Experiments with Abstract Meaning Representations

    Get PDF
    We evaluate the character-level translation method for neural semantic parsing on a large corpus of sentences annotated with Abstract Meaning Representations (AMRs). Using a sequence-to-sequence model, and some trivial preprocessing and postprocessing of AMRs, we obtain a baseline accuracy of 53.1 (F-score on AMR-triples). We examine five different approaches to improve this baseline result: (i) reordering AMR branches to match the word order of the input sentence increases performance to 58.3; (ii) adding part-of-speech tags (automatically produced) to the input shows improvement as well (57.2); (iii) So does the introduction of super characters (conflating frequent sequences of characters to a single character), reaching 57.4; (iv) optimizing the training process by using pre-training and averaging a set of models increases performance to 58.7; (v) adding silver-standard training data obtained by an off-the-shelf parser yields the biggest improvement, resulting in an F-score of 64.0. Combining all five techniques leads to an F-score of 71.0 on holdout data, which is state-of-the-art in AMR parsing. This is remarkable because of the relative simplicity of the approach.Comment: Camera ready for CLIN 2017 journa
    • …
    corecore