27 research outputs found

    Exploring the Dynamics of Nonlocal Nonlinear Waves: Analytical Insights into the Extended Kadomtsev-Petviashvili Model

    Full text link
    The study of nonlocal nonlinear systems and their dynamics is a rapidly increasing field of research. In this study, we take a closer look at the extended nonlocal Kadomtsev-Petviashvili (enKP) model through a systematic analysis of explicit solutions. Using a superposed bilinearization approach, we obtained a bilinear form of the enKP equation and constructed soliton solutions. Our findings show that the nature of the resulting nonlinear waves, including the amplitude, width, localization, and velocity, can be controlled by arbitrary solution parameters. The solutions exhibited both symmetric and asymmetric characteristics, including localized bell-type bright solitons, superposed kink-bell-type and antikink-bell-type soliton profiles. The solitons arising in this nonlocal model only undergo elastic interactions while maintaining their initial identities and shifting phases. Additionally, we demonstrated the possibility of generating bound-soliton molecules and breathers with appropriately chosen soliton parameters. The results of this study offer valuable insights into the dynamics of localized nonlinear waves in higher-dimensional nonlocal nonlinear models.Comment: 22 pages, 10 figures; submitted to journa
    corecore