555 research outputs found

    Symmetry Breaking Constraints: Recent Results

    Full text link
    Symmetry is an important problem in many combinatorial problems. One way of dealing with symmetry is to add constraints that eliminate symmetric solutions. We survey recent results in this area, focusing especially on two common and useful cases: symmetry breaking constraints for row and column symmetry, and symmetry breaking constraints for eliminating value symmetryComment: To appear in Proceedings of Twenty-Sixth Conference on Artificial Intelligence (AAAI-12

    Symmetry Breaking Using Value Precedence

    Full text link
    We present a comprehensive study of the use of value precedence constraints to break value symmetry. We first give a simple encoding of value precedence into ternary constraints that is both efficient and effective at breaking symmetry. We then extend value precedence to deal with a number of generalizations like wreath value and partial interchangeability. We also show that value precedence is closely related to lexicographical ordering. Finally, we consider the interaction between value precedence and symmetry breaking constraints for variable symmetries.Comment: 17th European Conference on Artificial Intelligenc

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    Encoding Lexicographical Ordering Constraints in SAT

    Get PDF
    Symmetry occurs in many constraint satisfaction problems, and it is important to deal with it efficiently and effectively, as it often leads to an exponential number of isomorphic assignments. Symmetric rows and columns in matrices are an important class of symmetries in constraint programming. In this work, we develop a new SAT encoding for partial lexicographical ordering constraints to break symmetries in such places. We also survey all the previous complete lex-leader encodings in literature and translate them into SAT encodings. We perform experimental analysis on how these lex-leader constraints impact the solving of Balanced Incomplete Block Design (BIBD) instances. Each encoding is able to outperform the other encodings on some instances, and they all perform close to each other; no clear winner can be drawn. Finally, the result shows that though using any lex-leader constraints is detrimental to finding a single BIBD, they are necessary in enumerating all BIBDs and proving non-existing designs

    Orbitopal Fixing

    Get PDF
    The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the order of the subsets of the partition is irrelevant, since this kind of symmetry unnecessarily blows up the search tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving such symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the search tree, removes redundant parts of the tree produced by the above mentioned symmetry. The method relies on certain polyhedra, called orbitopes, which have been introduced bei Kaibel and Pfetsch (Math. Programm. A, 114 (2008), 1-36). It does, however, not explicitly add inequalities to the model. Instead, it uses certain fixing rules for variables. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem.Comment: 22 pages, revised and extended version of a previous version that has appeared under the same title in Proc. IPCO 200
    • …
    corecore