9,934 research outputs found

    Brain Tumor Segmentation with Deep Neural Networks

    Full text link
    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test dataset reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster

    Automatic Brain Tumor Segmentation by Deep Convolutional Networks and Graph Cuts

    Get PDF
    Brain tumor segmentation in magnetic resonance imaging (MRI) is helpful for diagnostics, growth rate prediction, tumor volume measurements and treatment planning of brain tumor. The difficulties for brain tumor segmentation are mainly due to high variation of brain tumors in size, shape, regularity, location, and their heterogeneous appearance (e.g., contrast, intensity and texture variation for different tumors). Due to recent advances in deep convolutional neural networks for semantic image segmentation, automatic brain tumor segmentation is a promising research direction. This thesis investigates automatic brain tumor segmentation by combining deep convolutional neural network with regularization by a graph cut. We investigate several deep convolutional network structures that have been successful in semantic and medical image segmentation. Since the tumor pixels account for a very small portion in the whole brain slice, segmenting the tumor from the background is a highly imbalanced dense prediction task. We use a loss function that takes the imbalance of the training data into consideration. In the second part of the thesis, we improve the segmentation results of a deep neural network by using optimization framework with graph cuts. The graph cut framework can improve segmentation boundaries by making them more smooth and regular. The main issue when using the segmentation results of convolutional neural networks for the graph cut optimization framework is to convert tumor probabilities learned by a convolutional network into data terms. We investigate several possible ways that take into consideration the segmentation artifacts by convolutional neural networks. In experiments, we present the segmentation results by different deep convolutional neural network structures, e.g., fully convolutional neural network, dilated residual network and UNet. Also, we compare the combination of U-Net with different data terms for graph cut regularization to improve the neural network segmentation results. Experimental results show that the U-Net performs best with the intersection over union (IoU) for tumors of 0.7286. The IoU for tumors is improved to 0.7530 by training on three slices. Also, the IoU for tumors is improved to 0.7713 by U-Net with balanced loss function. The IoU for tumors is further improved to 0.8078 by graph cut regularization

    Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

    Get PDF
    Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors. Deep convolutional neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of using augmentation at test time, in addition to training time, for achieving more robust predictions. We investigate how test-time augmentation can improve CNNs' performance for brain tumor segmentation. We used different underpinning network structures and augmented the image by 3D rotation, flipping, scaling and adding random noise at both training and test time. Experiments with BraTS 2018 training and validation set show that test-time augmentation helps to improve the brain tumor segmentation accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201

    Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for brain tumor segmentation: BraTS 2020 challenge

    Full text link
    Training a deep neural network is an optimization problem with four main ingredients: the design of the deep neural network, the per-sample loss function, the population loss function, and the optimizer. However, methods developed to compete in recent BraTS challenges tend to focus only on the design of deep neural network architectures, while paying less attention to the three other aspects. In this paper, we experimented with adopting the opposite approach. We stuck to a generic and state-of-the-art 3D U-Net architecture and experimented with a non-standard per-sample loss function, the generalized Wasserstein Dice loss, a non-standard population loss function, corresponding to distributionally robust optimization, and a non-standard optimizer, Ranger. Those variations were selected specifically for the problem of multi-class brain tumor segmentation. The generalized Wasserstein Dice loss is a per-sample loss function that allows taking advantage of the hierarchical structure of the tumor regions labeled in BraTS. Distributionally robust optimization is a generalization of empirical risk minimization that accounts for the presence of underrepresented subdomains in the training dataset. Ranger is a generalization of the widely used Adam optimizer that is more stable with small batch size and noisy labels. We found that each of those variations of the optimization of deep neural networks for brain tumor segmentation leads to improvements in terms of Dice scores and Hausdorff distances. With an ensemble of three deep neural networks trained with various optimization procedures, we achieved promising results on the validation dataset of the BraTS 2020 challenge. Our ensemble ranked fourth out of the 693 registered teams for the segmentation task of the BraTS 2020 challenge.Comment: MICCAI 2020 BrainLes Workshop. Our method ranked fourth out of the 693 registered teams for the segmentation task of the BraTS 2020 challenge. v2: Added some clarifications following reviewers' feedback (camera-ready version
    • …
    corecore