2,113,365 research outputs found
2008 Progress Report on Brain Research
Highlights new research on various disorders, nervous system injuries, neuroethics, neuroimmunology, pain, sense and body function, stem cells and neurogenesis, and thought and memory. Includes essays on arts and cognition and on deep brain stimulation
Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline
Acknowledgments We would like to gratefully acknowledge all donors and their families for the tissue provided for this study. Human tissue samples were supplied by the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK, the Alzheimer’s Society and the Medical Research Council, and sourced from the MRC London Neurodegenerative Diseases Brain Bank, the Manchester Brain Bank, the South West Dementia Brain Bank (SWDBB), the Newcastle Brain Tissue Resource and the Oxford Brain Bank. The Newcastle Brain Tissue Resource and Oxford Brain Bank are also supported by the National Institute for Health Research (NIHR) Units. The South West Dementia Brain Bank (SWDBB) receives additional support from BRACE (Bristol Research into Alzheimer’s and Care of the Elderly). Alz-50, CP13, MC-1 and PHF-1 antibodies were gifted from Dr. Peter Davies and brain lystates from BACE1−/−mice were obtained from Prof Mike Ashford. The work presented here was funded by Alzheimer’s Research UK (Grant refs: ARUKPPG2014A-21 and ARUK-NSG2015-1 to BP and DK and NIH/NIA grants NIH/NINDS R01 NS082730 and R01 AG044372 to NK)Peer reviewedPublisher PD
Recommended from our members
Recent advances in understanding anorexia nervosa.
Anorexia nervosa is a complex psychiatric illness associated with food restriction and high mortality. Recent brain research in adolescents and adults with anorexia nervosa has used larger sample sizes compared with earlier studies and tasks that test specific brain circuits. Those studies have produced more robust results and advanced our knowledge of underlying biological mechanisms that may contribute to the development and maintenance of anorexia nervosa. It is now recognized that malnutrition and dehydration lead to dynamic changes in brain structure across the brain, which normalize with weight restoration. Some structural alterations could be trait factors but require replication. Functional brain imaging and behavioral studies have implicated learning-related brain circuits that may contribute to food restriction in anorexia nervosa. Most notably, those circuits involve striatal, insular, and frontal cortical regions that drive learning from reward and punishment, as well as habit learning. Disturbances in those circuits may lead to a vicious cycle that hampers recovery. Other studies have started to explore the neurobiology of interoception or social interaction and whether the connectivity between brain regions is altered in anorexia nervosa. All together, these studies build upon earlier research that indicated neurotransmitter abnormalities in anorexia nervosa and help us develop models of a distinct neurobiology that underlies anorexia nervosa
Interview with the Coordinator Prof. Giuseppe Di Giovanni, University of Malta, Department of Physiology and Biochemistry
Interview with the Coordinator of the Malta Neuroscience Network Programme, Prof. Giuseppe Di Giovanni regarding the Malta Neuroscience Net-
work. "With the creation of the Malta Neuroscience Network, we will be keeping up with the most important developments with regard to brain research world-
wide: multi-disciplinary collaboration. Understanding
the way the brain works, and above all brain diseases is
extremely complicated, and requires the involvement of
researchers coming from a number of diff erent scientifi c
disciplines and clinical areas collaborating in new ways."peer-reviewe
A 19-channel d.c. SQUID magnetometer system for brain research
A 19-channel d.c. SQUID magnetometer system for neuromagnetic investigations is under constuction. The first-order gradiometers for sensing the signal are placed in a hexagonal configuration. D.c. SQUIDs based on niobium/aluminium technology have been developed, leading to a field sensitivity of about 5 fT/ Hz. SQUID read-out is realized with a resonant transformer circuit at 100 kHz. The multichannel control and detection electronics are compactly built
- …
