700,176 research outputs found

    Nonlinear brain dynamics and many-body field dynamics

    Full text link
    We report measurements of the brain activity of subjects engaged in behavioral exchanges with their environments. We observe brain states which are characterized by coordinated oscillation of populations of neurons that are changing rapidly with the evolution of the meaningful relationship between the subject and its environment, established and maintained by active perception. Sequential spatial patterns of neural activity with high information content found in sensory cortices of trained animals between onsets of conditioned stimuli and conditioned responses resemble cinematographic frames. They are not readily amenable to description either with classical integrodifferential equations or with the matrix algebras of neural networks. Their modeling is provided by field theory from condensed matter physics.Comment: 8 pages, Invited talk presented at Fr\"ohlich Centenary International Symposium "Coherence and Electromagnetic Fields in Biological Systems", July 1-4, 2005, Prague, Czech Republi

    Genetic and Neuroanatomical Support for Functional Brain Network Dynamics in Epilepsy

    Full text link
    Focal epilepsy is a devastating neurological disorder that affects an overwhelming number of patients worldwide, many of whom prove resistant to medication. The efficacy of current innovative technologies for the treatment of these patients has been stalled by the lack of accurate and effective methods to fuse multimodal neuroimaging data to map anatomical targets driving seizure dynamics. Here we propose a parsimonious model that explains how large-scale anatomical networks and shared genetic constraints shape inter-regional communication in focal epilepsy. In extensive ECoG recordings acquired from a group of patients with medically refractory focal-onset epilepsy, we find that ictal and preictal functional brain network dynamics can be accurately predicted from features of brain anatomy and geometry, patterns of white matter connectivity, and constraints complicit in patterns of gene coexpression, all of which are conserved across healthy adult populations. Moreover, we uncover evidence that markers of non-conserved architecture, potentially driven by idiosyncratic pathology of single subjects, are most prevalent in high frequency ictal dynamics and low frequency preictal dynamics. Finally, we find that ictal dynamics are better predicted by white matter features and more poorly predicted by geometry and genetic constraints than preictal dynamics, suggesting that the functional brain network dynamics manifest in seizures rely on - and may directly propagate along - underlying white matter structure that is largely conserved across humans. Broadly, our work offers insights into the generic architectural principles of the human brain that impact seizure dynamics, and could be extended to further our understanding, models, and predictions of subject-level pathology and response to intervention

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    Multifunctionality in embodied agents: Three levels of neural reuse

    Get PDF
    The brain in conjunction with the body is able to adapt to new environments and perform multiple behaviors through reuse of neural resources and transfer of existing behavioral traits. Although mechanisms that underlie this ability are not well understood, they are largely attributed to neuromodulation. In this work, we demonstrate that an agent can be multifunctional using the same sensory and motor systems across behaviors, in the absence of modulatory mechanisms. Further, we lay out the different levels at which neural reuse can occur through a dynamical filtering of the brain-body-environment system's operation: structural network, autonomous dynamics, and transient dynamics. Notably, transient dynamics reuse could only be explained by studying the brain-body-environment system as a whole and not just the brain. The multifunctional agent we present here demonstrates neural reuse at all three levels.Comment: Accepted at Cognitive Science Conference, 201

    Critical brain networks

    Full text link
    Highly correlated brain dynamics produces synchronized states with no behavioral value, while weakly correlated dynamics prevents information flow. We discuss the idea put forward by Per Bak that the working brain stays at an intermediate (critical) regime characterized by power-law correlations.Comment: Contribution to the Niels Bohr Summer Institute on Complexity and Criticality (2003); to appear in a Per Bak Memorial Issue of PHYSICA
    corecore