700,176 research outputs found
Nonlinear brain dynamics and many-body field dynamics
We report measurements of the brain activity of subjects engaged in
behavioral exchanges with their environments. We observe brain states which are
characterized by coordinated oscillation of populations of neurons that are
changing rapidly with the evolution of the meaningful relationship between the
subject and its environment, established and maintained by active perception.
Sequential spatial patterns of neural activity with high information content
found in sensory cortices of trained animals between onsets of conditioned
stimuli and conditioned responses resemble cinematographic frames. They are not
readily amenable to description either with classical integrodifferential
equations or with the matrix algebras of neural networks. Their modeling is
provided by field theory from condensed matter physics.Comment: 8 pages, Invited talk presented at Fr\"ohlich Centenary International
Symposium "Coherence and Electromagnetic Fields in Biological Systems", July
1-4, 2005, Prague, Czech Republi
Genetic and Neuroanatomical Support for Functional Brain Network Dynamics in Epilepsy
Focal epilepsy is a devastating neurological disorder that affects an
overwhelming number of patients worldwide, many of whom prove resistant to
medication. The efficacy of current innovative technologies for the treatment
of these patients has been stalled by the lack of accurate and effective
methods to fuse multimodal neuroimaging data to map anatomical targets driving
seizure dynamics. Here we propose a parsimonious model that explains how
large-scale anatomical networks and shared genetic constraints shape
inter-regional communication in focal epilepsy. In extensive ECoG recordings
acquired from a group of patients with medically refractory focal-onset
epilepsy, we find that ictal and preictal functional brain network dynamics can
be accurately predicted from features of brain anatomy and geometry, patterns
of white matter connectivity, and constraints complicit in patterns of gene
coexpression, all of which are conserved across healthy adult populations.
Moreover, we uncover evidence that markers of non-conserved architecture,
potentially driven by idiosyncratic pathology of single subjects, are most
prevalent in high frequency ictal dynamics and low frequency preictal dynamics.
Finally, we find that ictal dynamics are better predicted by white matter
features and more poorly predicted by geometry and genetic constraints than
preictal dynamics, suggesting that the functional brain network dynamics
manifest in seizures rely on - and may directly propagate along - underlying
white matter structure that is largely conserved across humans. Broadly, our
work offers insights into the generic architectural principles of the human
brain that impact seizure dynamics, and could be extended to further our
understanding, models, and predictions of subject-level pathology and response
to intervention
The Complementary Brain: From Brain Dynamics To Conscious Experiences
How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Multifunctionality in embodied agents: Three levels of neural reuse
The brain in conjunction with the body is able to adapt to new environments
and perform multiple behaviors through reuse of neural resources and transfer
of existing behavioral traits. Although mechanisms that underlie this ability
are not well understood, they are largely attributed to neuromodulation. In
this work, we demonstrate that an agent can be multifunctional using the same
sensory and motor systems across behaviors, in the absence of modulatory
mechanisms. Further, we lay out the different levels at which neural reuse can
occur through a dynamical filtering of the brain-body-environment system's
operation: structural network, autonomous dynamics, and transient dynamics.
Notably, transient dynamics reuse could only be explained by studying the
brain-body-environment system as a whole and not just the brain. The
multifunctional agent we present here demonstrates neural reuse at all three
levels.Comment: Accepted at Cognitive Science Conference, 201
Critical brain networks
Highly correlated brain dynamics produces synchronized states with no
behavioral value, while weakly correlated dynamics prevents information flow.
We discuss the idea put forward by Per Bak that the working brain stays at an
intermediate (critical) regime characterized by power-law correlations.Comment: Contribution to the Niels Bohr Summer Institute on Complexity and
Criticality (2003); to appear in a Per Bak Memorial Issue of PHYSICA
- …
