3,109 research outputs found

    n-Heptane hydroconversion over nickel-loaded aluminum- and/or boron-containing BEA zeolites prepared by recrystallization of magadiite varieties

    Get PDF
    Phase-pure [Al]BEA and [Al,B]BEA zeolites, prepared by solid-state recrystallization of synthetic aluminum-containing magadiites and conventionally synthesized [B]BEA, were tested, after ion exchange with nickel, as bifunctional catalysts for hydroconversion of n-heptane. The reducibility of nickel ions incorporated into BEA zeolites by ion exchange was investigated by temperature-programmed reduction (TPR). The acidity of the samples was characterized with strong (pyridine (Py), ammonia (NH3)) and weak (nitrogen) bases. The adsorbed bases were studied by transmission FT-IR (Py), diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy (N2), and temperature-programmed ammonia evolution (TPAE, NH3). Over Ni/H-[B]BEA the reactants were completely converted via fast hydrogenolysis, whereas this reaction pathway plays only a negligible role in the hydroconversion over Ni/H-[Al]BEA and Ni/H-[Al,B]BEA zeolites. Boron-containing BEA zeolites were less active catalysts than the boron-free catalyst in the principal unimolecular hydroconversion reactions. However, incorporation of boron into the framework of BEA zeolite results in a considerable selectivity shift towards isomerization. Results suggest that the acid strength of bridged hydroxyls, probed with weak (N2) and strong basis (pyridine), was found to be similar in the boron-free and boron-containing BEA samples. The decrease in the isomerization rate and the increase of the apparent activation energy upon incorporation of boron may be attributed to the decrease in the heat of n-heptane adsorption

    Stereodivergent, Diels-Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application.

    Get PDF
    Chiral α,β-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic γ- and δ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcohols, and application to a formal synthesis of (+)-dihydrocompactin is described. A combined experimental and computational investigation of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of Brønsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with experimentally observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR analysis of diene alcohol-Brønsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through hydrogen-bonding effects

    Understanding brønsted-acid catalyzed monomolecular reactions of Alkanes in Zeolite Pores by combining insights from experiment and theory

    Get PDF
    Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at BrOnsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k(app)), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+) and the intrinsic rate coefficient of the reaction (k(int)) at reaction temperatures, since k(app) is proportional to the product of Kads-H+ and k(int). We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C-3-C-6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k(app) and its components, Kads-H+ and k(int)

    The ammonolysis of esters in liquid ammonia

    Get PDF
    The rates of ammonolysis of alkyl benzoate and phenylacetate esters in liquid ammonia increase with the acidity of the leaving group alcohol and show relatively large Brønsted βlg values of −1.18 and −1.34, respectively, when plotted against the aqueous pKa of the alcohol. The Brønsted βlg obtained using the pKa of the leaving group alcohol in liquid ammonia is significantly reduced to ~ −0.7, which indicates that the rate-limiting step involves a reaction of the tetrahedral intermediate with little C–OR bond fission in the transition state. The solvolysis reaction is subject to significant catalysis by ammonium ion, which, surprisingly, generates a similar Brønsted βlg indicating little interaction between the ammonium ion and the leaving group. It is concluded that the rate-limiting step for the ammonium-ion-catalysed solvolysis of alkyl esters in liquid ammonia is the diffusion-controlled protonation of the zwitterionic tetrahedral intermediate T+- to give T+, which is rapidly deprotonated to give T0 which is compatible with the rate-limiting step for the uncatalysed reaction being the formation of the neutral T0 by a ‘proton switc

    n-Heptane hydroconversion over sulfated-zirconia-supported molybdenum carbide catalysts

    Get PDF
    Tertiary Education Trust Fund (TETFUND) NigeriaPeer reviewedPublisher PD

    Preparation of highly active phosphated TiO2 catalysts via continuous sol–gel synthesis in a microreactor

    Get PDF
    Microreactors, featuring μm-sized tubes, offer greater flexibility and precise control of chemical processes compared to conventional large-scale reactors, due to their elevated surface-to-volume ratio and modular construction. However, their application in catalyst production has been largely neglected. Herein, we present the development of a microreactor process for the one-step sol–gel preparation of phosphated TiO2 – a catalyst which has been recently demonstrated to be an eco-friendly material for the selective synthesis of the platform chemical 5-hydroxymethylfurfural (5-HMF) from bio-derived glucose. In order to establish catalyst preparation–property–performance relationships, 18 samples were prepared according to a D-optimal experimental plan with a central point. The key properties of these samples (porosity, crystallite size, mole bulk fraction of P) were correlated, using quadratic and interaction models, with the catalytic performance (conversion, selectivity, reaction rate) of 5-HMF synthesis as a test reaction. The optimal calculated catalyst features were set as target parameters to optimise catalyst synthesis applying quadratic correlation functions. An optimal catalyst was obtained, validating the models employed, with a yield of almost 100% and a space–time yield of ca. 3 orders of magnitude higher than that of a conventional batch process. The high yield could be mainly attributed to the optimal hydrolysis ratio and temperature. Controlling the TiO2 crystallite size and surface acidity in conjunction with fine-tuning of the porous properties in the microreactor led to increased glucose conversion, surface based formation rates of 5-HMF, and selectivity towards 5-HMF of the optimal catalyst in relation to the batch-prepared material

    Inactivation of Mandelate Racemase by 3-Hydroxypyruvate Reveals a Potential Mechanistic Link between Enzyme Superfamilies

    Get PDF
    Mandelate racemase (MR), a member of the enolase superfamily, catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate. Several α-keto acids are modest competitive inhibitors of MR [e.g., mesoxalate (Ki = 1.8 ± 0.3 mM) and 3-fluoropyruvate (Ki = 1.3 ± 0.1 mM)], but, surprisingly, 3-hydroxypyruvate (3-HP) is an irreversible, time-dependent inhibitor (kinact/KI = 83 ± 8 M–1 s–1). Protection from inactivation by the competitive inhibitor benzohydroxamate, trypsinolysis and electrospray ionization tandem mass spectrometry analyses, and X-ray crystallographic studies reveal that 3-HP undergoes Schiff-base formation with Lys 166 at the active site, followed by formation of an aldehyde/enol(ate) adduct. Such a reaction is unprecedented in the enolase superfamily and may be a relic of an activity possessed by a promiscuous progenitor enzyme. The ability of MR to form and deprotonate a Schiff-base intermediate furnishes a previously unrecognized mechanistic link to other α/β-barrel enzymes utilizing Schiff-base chemistry and is in accord with the sequence- and structure-based hypothesis that members of the metal-dependent enolase superfamily and the Schiff-base-forming N-acetylneuraminate lyase superfamily and aldolases share a common ancestor

    A Classical Molecular Dynamics Study on the Effect of Si/Al Ratio and Silanol Nest Defects on Water Diffusion in Zeolite HY

    Get PDF
    The diffusion of water confined in zeolite HY has been studied using classical molecular dynamics at 300 K to probe the effects of water loading, Si/Al ratio, and silanol nest defect presence on the behavior of water confined in Brønsted acidic faujasite (FAU) zeolites. Water loading, ranging from 5 to 33 wt %, is shown to have a significant effect on diffusivity, showing an increase by a factor of ∼7 over the loading range, toward a maximum diffusivity. Upon probing the effect of Si/Al ratio (in a range of Si/Al = 5 to fully siliceous), water diffusivity tends to decrease with the concentration of Brønsted acid sites which show strong interactions with the water molecules and thus hinder molecular mobility. The average residence time of water adsorbed to each Brønsted acid site also decreased with both water loading and Si/Al ratio. Water diffusivity shows the highest dependency on Si/Al ratio at 18 wt % loading, as a lack of total mobility in the systems at the lowest loadings is observed (due to significant populations of water molecules being immobilized via interaction with the framework and Brønsted acid sites), and less of a dependence is observed at the highest loadings due to the prevalence of sorbate-sorbate interactions. Notably, silanol nest presence (at a concentration of 1 per unit cell) had no significant effect on the diffusivity of water in HY at any water loading or Si/Al ratio. Reasons considered for this lack of influence include silanol geometry and flexibility at ambient temperature and potentially a lower effective charge density of the defect site.</p
    corecore