27 research outputs found

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    Separation dimension of bounded degree graphs

    Full text link
    The 'separation dimension' of a graph GG is the smallest natural number kk for which the vertices of GG can be embedded in Rk\mathbb{R}^k such that any pair of disjoint edges in GG can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F\mathcal{F} of total orders of the vertices of GG such that for any two disjoint edges of GG, there exists at least one total order in F\mathcal{F} in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on nn vertices is Θ(logn)\Theta(\log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree dd is at most 29logdd2^{9log^{\star} d} d. We also demonstrate that the above bound is nearly tight by showing that, for every dd, almost all dd-regular graphs have separation dimension at least d/2\lceil d/2\rceil.Comment: One result proved in this paper is also present in arXiv:1212.675

    Local Boxicity, Local Dimension, and Maximum Degree

    Full text link
    In this paper, we focus on two recently introduced parameters in the literature, namely `local boxicity' (a parameter on graphs) and `local dimension' (a parameter on partially ordered sets). We give an `almost linear' upper bound for both the parameters in terms of the maximum degree of a graph (for local dimension we consider the comparability graph of a poset). Further, we give an O(nΔ2)O(n\Delta^2) time deterministic algorithm to compute a local box representation of dimension at most 3Δ3\Delta for a claw-free graph, where nn and Δ\Delta denote the number of vertices and the maximum degree, respectively, of the graph under consideration. We also prove two other upper bounds for the local boxicity of a graph, one in terms of the number of vertices and the other in terms of the number of edges. Finally, we show that the local boxicity of a graph is upper bounded by its `product dimension'.Comment: 11 page
    corecore