5,731 research outputs found

    Detecting hierarchical and overlapping network communities using locally optimal modularity changes

    Full text link
    Agglomerative clustering is a well established strategy for identifying communities in networks. Communities are successively merged into larger communities, coarsening a network of actors into a more manageable network of communities. The order in which merges should occur is not in general clear, necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering algorithm based on a local optimality property. For each edge in the network, we associate the modularity change for merging the communities it links. For each community vertex, we call the preferred edge that edge for which the modularity change is maximal. When an edge is preferred by both vertices that it links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal edges that would increase the modularity, redetermining the locally optimal edges after each step and continuing so long as the modularity can be further increased. We apply the algorithm to model and empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We relate the performance and implementation details to the structure of the resulting community hierarchies. We additionally consider a complementary local clustering algorithm, describing how to identify overlapping communities based on the local optimality condition.Comment: 10 pages; 4 tables, 3 figure

    The Network Improvement Problem for Equilibrium Routing

    Full text link
    In routing games, agents pick their routes through a network to minimize their own delay. A primary concern for the network designer in routing games is the average agent delay at equilibrium. A number of methods to control this average delay have received substantial attention, including network tolls, Stackelberg routing, and edge removal. A related approach with arguably greater practical relevance is that of making investments in improvements to the edges of the network, so that, for a given investment budget, the average delay at equilibrium in the improved network is minimized. This problem has received considerable attention in the literature on transportation research and a number of different algorithms have been studied. To our knowledge, none of this work gives guarantees on the output quality of any polynomial-time algorithm. We study a model for this problem introduced in transportation research literature, and present both hardness results and algorithms that obtain nearly optimal performance guarantees. - We first show that a simple algorithm obtains good approximation guarantees for the problem. Despite its simplicity, we show that for affine delays the approximation ratio of 4/3 obtained by the algorithm cannot be improved. - To obtain better results, we then consider restricted topologies. For graphs consisting of parallel paths with affine delay functions we give an optimal algorithm. However, for graphs that consist of a series of parallel links, we show the problem is weakly NP-hard. - Finally, we consider the problem in series-parallel graphs, and give an FPTAS for this case. Our work thus formalizes the intuition held by transportation researchers that the network improvement problem is hard, and presents topology-dependent algorithms that have provably tight approximation guarantees.Comment: 27 pages (including abstract), 3 figure

    Convexity and Robustness of Dynamic Traffic Assignment and Freeway Network Control

    Get PDF
    We study the use of the System Optimum (SO) Dynamic Traffic Assignment (DTA) problem to design optimal traffic flow controls for freeway networks as modeled by the Cell Transmission Model, using variable speed limit, ramp metering, and routing. We consider two optimal control problems: the DTA problem, where turning ratios are part of the control inputs, and the Freeway Network Control (FNC), where turning ratios are instead assigned exogenous parameters. It is known that relaxation of the supply and demand constraints in the cell-based formulations of the DTA problem results in a linear program. However, solutions to the relaxed problem can be infeasible with respect to traffic dynamics. Previous work has shown that such solutions can be made feasible by proper choice of ramp metering and variable speed limit control for specific traffic networks. We extend this procedure to arbitrary networks and provide insight into the structure and robustness of the proposed optimal controllers. For a network consisting only of ordinary, merge, and diverge junctions, where the cells have linear demand functions and affine supply functions with identical slopes, and the cost is the total traffic volume, we show, using the maximum principle, that variable speed limits are not needed in order to achieve optimality in the FNC problem, and ramp metering is sufficient. We also prove bounds on perturbation of the controlled system trajectory in terms of perturbations in initial traffic volume and exogenous inflows. These bounds, which leverage monotonicity properties of the controlled trajectory, are shown to be in close agreement with numerical simulation results
    • …
    corecore