4,016 research outputs found

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Vertex arboricity of triangle-free graphs

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2016The vertex arboricity of a graph is the minimum number of colors needed to color the vertices so that the subgraph induced by each color class is a forest. In other words, the vertex arboricity of a graph is the fewest number of colors required in order to color a graph such that every cycle has at least two colors. Although not standard, we will refer to vertex arboricity simply as arboricity. In this paper, we discuss properties of chromatic number and k-defective chromatic number and how those properties relate to the arboricity of trianglefree graphs. In particular, we find bounds on the minimum order of a graph having arboricity three. Equivalently, we consider the largest possible vertex arboricity of triangle-free graphs of fixed order

    New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix

    Get PDF
    The purpose of this article is to improve existing lower bounds on the chromatic number chi. Let mu_1,...,mu_n be the eigenvalues of the adjacency matrix sorted in non-increasing order. First, we prove the lower bound chi >= 1 + max_m {sum_{i=1}^m mu_i / - sum_{i=1}^m mu_{n-i+1}} for m=1,...,n-1. This generalizes the Hoffman lower bound which only involves the maximum and minimum eigenvalues, i.e., the case m=1m=1. We provide several examples for which the new bound exceeds the {\sc Hoffman} lower bound. Second, we conjecture the lower bound chi >= 1 + S^+ / S^-, where S^+ and S^- are the sums of the squares of positive and negative eigenvalues, respectively. To corroborate this conjecture, we prove the weaker bound chi >= S^+/S^-. We show that the conjectured lower bound is tight for several families of graphs. We also performed various searches for a counter-example, but none was found. Our proofs rely on a new technique of converting the adjacency matrix into the zero matrix by conjugating with unitary matrices and use majorization of spectra of self-adjoint matrices. We also show that the above bounds are actually lower bounds on the normalized orthogonal rank of a graph, which is always less than or equal to the chromatic number. The normalized orthogonal rank is the minimum dimension making it possible to assign vectors with entries of modulus one to the vertices such that two such vectors are orthogonal if the corresponding vertices are connected. All these bounds are also valid when we replace the adjacency matrix A by W * A where W is an arbitrary self-adjoint matrix and * denotes the Schur product, that is, entrywise product of W and A

    The Parameterised Complexity of List Problems on Graphs of Bounded Treewidth

    Get PDF
    We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that List Edge Chromatic Number and List Total Chromatic Number are fixed parameter tractable, parameterised by treewidth, whereas List Hamilton Path is W[1]-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011).Comment: Author final version, to appear in Information and Computation. Changes from previous version include improved literature references and restructured proof in Section

    Sum Coloring : New upper bounds for the chromatic strength

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is derived from the Graph Coloring Problem (GCP) by associating a weight to each color. The aim of MSCP is to find a coloring solution of a graph such that the sum of color weights is minimum. MSCP has important applications in fields such as scheduling and VLSI design. We propose in this paper new upper bounds of the chromatic strength, i.e. the minimum number of colors in an optimal solution of MSCP, based on an abstraction of all possible colorings of a graph called motif. Experimental results on standard benchmarks show that our new bounds are significantly tighter than the previous bounds in general, allowing to reduce substantially the search space when solving MSCP .Comment: pre-prin

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675
    corecore