3,529 research outputs found

    Control of Homodirectional and General Heterodirectional Linear Coupled Hyperbolic PDEs

    Full text link
    Research on stabilization of coupled hyperbolic PDEs has been dominated by the focus on pairs of counter-convecting ("heterodirectional") transport PDEs with distributed local coupling and with controls at one or both boundaries. A recent extension allows stabilization using only one control for a system containing an arbitrary number of coupled transport PDEs that convect at different speeds against the direction of the PDE whose boundary is actuated. In this paper we present a solution to the fully general case, in which the number of PDEs in either direction is arbitrary, and where actuation is applied on only one boundary (to all the PDEs that convect downstream from that boundary). To solve this general problem, we solve, as a special case, the problem of control of coupled "homodirectional" hyperbolic linear PDEs, where multiple transport PDEs convect in the same direction with arbitrary local coupling. Our approach is based on PDE backstepping and yields solutions to stabilization, by both full-state and observer-based output feedback, trajectory planning, and trajectory tracking problems

    Kinetic layers and coupling conditions for macroscopic equations on networks I: the wave equation

    Full text link
    We consider kinetic and associated macroscopic equations on networks. The general approach will be explained in this paper for a linear kinetic BGK model and the corresponding limit for small Knudsen number, which is the wave equation. Coupling conditions for the macroscopic equations are derived from the kinetic conditions via an asymptotic analysis near the nodes of the network. This analysis leads to the consideration of a fixpoint problem involving the coupled solutions of kinetic half-space problems. A new approximate method for the solution of kinetic half-space problems is derived and used for the determination of the coupling conditions. Numerical comparisons between the solutions of the macroscopic equation with different coupling conditions and the kinetic solution are presented for the case of tripod and more complicated networks

    A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods

    Full text link
    We introduce a polynomial spectral calculus that follows from the summation by parts property of the Legendre-Gauss-Lobatto quadrature. We use the calculus to simplify the analysis of two multidimensional discontinuous Galerkin spectral element approximations
    corecore