8 research outputs found

    Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation

    Full text link
    Accurate segmentation of the optic disc (OD) and cup (OC)in fundus images from different datasets is critical for glaucoma disease screening. The cross-domain discrepancy (domain shift) hinders the generalization of deep neural networks to work on different domain datasets.In this work, we present an unsupervised domain adaptation framework,called Boundary and Entropy-driven Adversarial Learning (BEAL), to improve the OD and OC segmentation performance, especially on the ambiguous boundary regions. In particular, our proposed BEAL frame-work utilizes the adversarial learning to encourage the boundary prediction and mask probability entropy map (uncertainty map) of the target domain to be similar to the source ones, generating more accurate boundaries and suppressing the high uncertainty predictions of OD and OC segmentation. We evaluate the proposed BEAL framework on two public retinal fundus image datasets (Drishti-GS and RIM-ONE-r3), and the experiment results demonstrate that our method outperforms the state-of-the-art unsupervised domain adaptation methods. Codes will be available at https://github.com/EmmaW8/BEAL.Comment: Accepted at MICCAI 201

    Distribution Aligned Diffusion and Prototype-guided network for Unsupervised Domain Adaptive Segmentation

    Full text link
    The Diffusion Probabilistic Model (DPM) has emerged as a highly effective generative model in the field of computer vision. Its intermediate latent vectors offer rich semantic information, making it an attractive option for various downstream tasks such as segmentation and detection. In order to explore its potential further, we have taken a step forward and considered a more complex scenario in the medical image domain, specifically, under an unsupervised adaptation condition. To this end, we propose a Diffusion-based and Prototype-guided network (DP-Net) for unsupervised domain adaptive segmentation. Concretely, our DP-Net consists of two stages: 1) Distribution Aligned Diffusion (DADiff), which involves training a domain discriminator to minimize the difference between the intermediate features generated by the DPM, thereby aligning the inter-domain distribution; and 2) Prototype-guided Consistency Learning (PCL), which utilizes feature centroids as prototypes and applies a prototype-guided loss to ensure that the segmentor learns consistent content from both source and target domains. Our approach is evaluated on fundus datasets through a series of experiments, which demonstrate that the performance of the proposed method is reliable and outperforms state-of-the-art methods. Our work presents a promising direction for using DPM in complex medical image scenarios, opening up new possibilities for further research in medical imaging

    Context-Aware Pseudo-Label Refinement for Source-Free Domain Adaptive Fundus Image Segmentation

    Full text link
    In the domain adaptation problem, source data may be unavailable to the target client side due to privacy or intellectual property issues. Source-free unsupervised domain adaptation (SF-UDA) aims at adapting a model trained on the source side to align the target distribution with only the source model and unlabeled target data. The source model usually produces noisy and context-inconsistent pseudo-labels on the target domain, i.e., neighbouring regions that have a similar visual appearance are annotated with different pseudo-labels. This observation motivates us to refine pseudo-labels with context relations. Another observation is that features of the same class tend to form a cluster despite the domain gap, which implies context relations can be readily calculated from feature distances. To this end, we propose a context-aware pseudo-label refinement method for SF-UDA. Specifically, a context-similarity learning module is developed to learn context relations. Next, pseudo-label revision is designed utilizing the learned context relations. Further, we propose calibrating the revised pseudo-labels to compensate for wrong revision caused by inaccurate context relations. Additionally, we adopt a pixel-level and class-level denoising scheme to select reliable pseudo-labels for domain adaptation. Experiments on cross-domain fundus images indicate that our approach yields the state-of-the-art results. Code is available at https://github.com/xmed-lab/CPR.Comment: Accepted by MICCAI 2023, 11 page

    Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation

    Full text link
    The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation. Thanks to its impressive capabilities in all-round segmentation tasks and its prompt-based interface, SAM has sparked intensive discussion within the community. It is even said by many prestigious experts that image segmentation task has been "finished" by SAM. However, medical image segmentation, although an important branch of the image segmentation family, seems not to be included in the scope of Segmenting "Anything". Many individual experiments and recent studies have shown that SAM performs subpar in medical image segmentation. A natural question is how to find the missing piece of the puzzle to extend the strong segmentation capability of SAM to medical image segmentation. In this paper, instead of fine-tuning the SAM model, we propose Med SAM Adapter, which integrates the medical specific domain knowledge to the segmentation model, by a simple yet effective adaptation technique. Although this work is still one of a few to transfer the popular NLP technique Adapter to computer vision cases, this simple implementation shows surprisingly good performance on medical image segmentation. A medical image adapted SAM, which we have dubbed Medical SAM Adapter (MSA), shows superior performance on 19 medical image segmentation tasks with various image modalities including CT, MRI, ultrasound image, fundus image, and dermoscopic images. MSA outperforms a wide range of state-of-the-art (SOTA) medical image segmentation methods, such as nnUNet, TransUNet, UNetr, MedSegDiff, and also outperforms the fully fine-turned MedSAM with a considerable performance gap. Code will be released at: https://github.com/WuJunde/Medical-SAM-Adapter

    Multi Task Consistency Guided Source-Free Test-Time Domain Adaptation Medical Image Segmentation

    Full text link
    Source-free test-time adaptation for medical image segmentation aims to enhance the adaptability of segmentation models to diverse and previously unseen test sets of the target domain, which contributes to the generalizability and robustness of medical image segmentation models without access to the source domain. Ensuring consistency between target edges and paired inputs is crucial for test-time adaptation. To improve the performance of test-time domain adaptation, we propose a multi task consistency guided source-free test-time domain adaptation medical image segmentation method which ensures the consistency of the local boundary predictions and the global prototype representation. Specifically, we introduce a local boundary consistency constraint method that explores the relationship between tissue region segmentation and tissue boundary localization tasks. Additionally, we propose a global feature consistency constraint toto enhance the intra-class compactness. We conduct extensive experiments on the segmentation of benchmark fundus images. Compared to prediction directly by the source domain model, the segmentation Dice score is improved by 6.27\% and 0.96\% in RIM-ONE-r3 and Drishti GS datasets, respectively. Additionally, the results of experiments demonstrate that our proposed method outperforms existing competitive domain adaptation segmentation algorithms.Comment: 31 pages,7 figure
    corecore