10,836 research outputs found

    Linking Classical and Quantum Key Agreement: Is There "Bound Information"?

    Get PDF
    After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We prove for general states but under the assumption of incoherent eavesdropping that Alice and Bob share some so-called intrinsic information in their classical random variables, resulting from optimal measurements, if and only if the parties' quantum systems are entangled. In addition, we provide evidence that the potentials of classical and of quantum protocols are equal in every situation. Consequently, many techniques and results from quantum information theory directly apply to problems in classical information theory, and vice versa. For instance, it was previously believed that two parties can carry out unconditionally secure key agreement as long as they share some intrinsic information in the adversary's view. The analysis of this purely classical problem from the quantum information-theoretic viewpoint shows that this is true in the binary case, but false in general. More explicitly, bound entanglement, i.e., entanglement that cannot be purified by any quantum protocol, has a classical counterpart. This "bound intrinsic information" cannot be distilled to a secret key by any classical protocol. As another application we propose a measure for entanglement based on classical information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page

    Perfect Quantum Privacy Implies Nonlocality

    Full text link
    Private states are those quantum states from which a perfectly secure cryptographic key can be extracted. They represent the basic unit of quantum privacy. In this work we show that all states belonging to this class violate a Bell inequality. This result establishes a connection between perfect privacy and nonlocality in the quantum domain.Comment: 4 pages, published versio

    A deterministic detector for vector vortex states

    Get PDF
    Encoding information in high-dimensional degrees of freedom of photons has led to new avenues in various quantum protocols such as communication and information processing. Yet to fully benefit from the increase in dimension requires a deterministic detection system, e.g., to reduce dimension dependent photon loss in quantum key distribution. Recently, there has been a growing interest in using vector vortex modes, spatial modes of light with entangled degrees of freedom, as a basis for encoding information. However, there is at present no method to detect these non-separable states in a deterministic manner, negating the benefit of the larger state space. Here we present a method to deterministically detect single photon states in a four dimensional space spanned by vector vortex modes with entangled polarisation and orbital angular momentum degrees of freedom. We demonstrate our detection system with vector vortex modes from the |[Formula: see text]| = 1 and |[Formula: see text]| = 10 subspaces using classical and weak coherent states and find excellent detection fidelities for both pure and superposition vector states. This work opens the possibility to increase the dimensionality of the state-space used for encoding information while maintaining deterministic detection and will be invaluable for long distance classical and quantum communication

    "Squashed Entanglement" - An Additive Entanglement Measure

    Full text link
    In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call "squashed entanglement": it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.Comment: 8 pages, revtex4. v2 has some more references and a bit more discussion, v3 continuity discussion extended, typos correcte
    • …
    corecore