98,924 research outputs found

    Document re-ranking using cluster validation and label propagation

    Full text link
    This paper proposes a novel document re-ranking approach in information retrieval, which is done by a label propagation-based semi-supervised learning algorithm to utilize the intrinsic structure underlying in the large document data. Since no labeled relevant or irrelevant documents are generally available in IR, our approach tries to extract some pseudo labeled documents from the ranking list of the initial retrieval. For pseudo relevant documents, we determine a cluster of documents from the top ones via cluster validation-based k-means clustering; for pseudo irrelevant ones, we pick a set of documents from the bottom ones. Then the ranking of the documents can be conducted via label propagation. Evaluation on benchmark corpora shows that the approach can achieve significant improvement over standard baselines and performs better than other related approaches

    Document Retrieval on Repetitive Collections

    Full text link
    Document retrieval aims at finding the most important documents where a pattern appears in a collection of strings. Traditional pattern-matching techniques yield brute-force document retrieval solutions, which has motivated the research on tailored indexes that offer near-optimal performance. However, an experimental study establishing which alternatives are actually better than brute force, and which perform best depending on the collection characteristics, has not been carried out. In this paper we address this shortcoming by exploring the relationship between the nature of the underlying collection and the performance of current methods. Via extensive experiments we show that established solutions are often beaten in practice by brute-force alternatives. We also design new methods that offer superior time/space trade-offs, particularly on repetitive collections.Comment: Accepted to ESA 2014. Implementation and experiments at http://www.cs.helsinki.fi/group/suds/rlcsa

    Automated legal sensemaking: the centrality of relevance and intentionality

    Get PDF
    Introduction: In a perfect world, discovery would ideally be conducted by the senior litigator who is responsible for developing and fully understanding all nuances of their client’s legal strategy. Of course today we must deal with the explosion of electronically stored information (ESI) that never is less than tens-of-thousands of documents in small cases and now increasingly involves multi-million-document populations for internal corporate investigations and litigations. Therefore scalable processes and technologies are required as a substitute for the authority’s judgment. The approaches taken have typically either substituted large teams of surrogate human reviewers using vastly simplified issue coding reference materials or employed increasingly sophisticated computational resources with little focus on quality metrics to insure retrieval consistent with the legal goal. What is required is a system (people, process, and technology) that replicates and automates the senior litigator’s human judgment. In this paper we utilize 15 years of sensemaking research to establish the minimum acceptable basis for conducting a document review that meets the needs of a legal proceeding. There is no substitute for a rigorous characterization of the explicit and tacit goals of the senior litigator. Once a process has been established for capturing the authority’s relevance criteria, we argue that literal translation of requirements into technical specifications does not properly account for the activities or states-of-affairs of interest. Having only a data warehouse of written records, it is also necessary to discover the intentions of actors involved in textual communications. We present quantitative results for a process and technology approach that automates effective legal sensemaking

    Modeling Documents with Deep Boltzmann Machines

    Full text link
    We introduce a Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This parameter tying enables an efficient pretraining algorithm and a state initialization scheme that aids inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    The State-of-the-arts in Focused Search

    Get PDF
    The continuous influx of various text data on the Web requires search engines to improve their retrieval abilities for more specific information. The need for relevant results to a user’s topic of interest has gone beyond search for domain or type specific documents to more focused result (e.g. document fragments or answers to a query). The introduction of XML provides a format standard for data representation, storage, and exchange. It helps focused search to be carried out at different granularities of a structured document with XML markups. This report aims at reviewing the state-of-the-arts in focused search, particularly techniques for topic-specific document retrieval, passage retrieval, XML retrieval, and entity ranking. It is concluded with highlight of open problems

    Bridging the Semantic Gap in Multimedia Information Retrieval: Top-down and Bottom-up approaches

    No full text
    Semantic representation of multimedia information is vital for enabling the kind of multimedia search capabilities that professional searchers require. Manual annotation is often not possible because of the shear scale of the multimedia information that needs indexing. This paper explores the ways in which we are using both top-down, ontologically driven approaches and bottom-up, automatic-annotation approaches to provide retrieval facilities to users. We also discuss many of the current techniques that we are investigating to combine these top-down and bottom-up approaches
    corecore