81 research outputs found

    Bootstrapping a DQN Replay Memory with Synthetic Experiences

    Get PDF
    An important component of many Deep Reinforcement Learning algorithms is the Experience Replay which serves as a storage mechanism or memory of made experiences. These experiences are used for training and help the agent to stably find the perfect trajectory through the problem space. The classic Experience Replay however makes only use of the experiences it actually made, but the stored samples bear great potential in form of knowledge about the problem that can be extracted. We present an algorithm that creates synthetic experiences in a nondeterministic discrete environment to assist the learner. The Interpolated Experience Replay is evaluated on the FrozenLake environment and we show that it can support the agent to learn faster and even better than the classic version

    XCS Classifier System with Experience Replay

    Full text link
    XCS constitutes the most deeply investigated classifier system today. It bears strong potentials and comes with inherent capabilities for mastering a variety of different learning tasks. Besides outstanding successes in various classification and regression tasks, XCS also proved very effective in certain multi-step environments from the domain of reinforcement learning. Especially in the latter domain, recent advances have been mainly driven by algorithms which model their policies based on deep neural networks -- among which the Deep-Q-Network (DQN) is a prominent representative. Experience Replay (ER) constitutes one of the crucial factors for the DQN's successes, since it facilitates stabilized training of the neural network-based Q-function approximators. Surprisingly, XCS barely takes advantage of similar mechanisms that leverage stored raw experiences encountered so far. To bridge this gap, this paper investigates the benefits of extending XCS with ER. On the one hand, we demonstrate that for single-step tasks ER bears massive potential for improvements in terms of sample efficiency. On the shady side, however, we reveal that the use of ER might further aggravate well-studied issues not yet solved for XCS when applied to sequential decision problems demanding for long-action-chains

    Map-based Experience Replay: A Memory-Efficient Solution to Catastrophic Forgetting in Reinforcement Learning

    Get PDF
    Deep Reinforcement Learning agents often suffer from catastrophic forgetting, forgetting previously found solutions in parts of the input space when training on new data. Replay Memories are a common solution to the problem, decorrelating and shuffling old and new training samples. They naively store state transitions as they come in, without regard for redundancy. We introduce a novel cognitive-inspired replay memory approach based on the Grow-When-Required (GWR) self-organizing network, which resembles a map-based mental model of the world. Our approach organizes stored transitions into a concise environment-model-like network of state-nodes and transition-edges, merging similar samples to reduce the memory size and increase pair-wise distance among samples, which increases the relevancy of each sample. Overall, our paper shows that map-based experience replay allows for significant memory reduction with only small performance decreases.Comment: Accepted for publication in Frontiers in Neurorobotic

    Cooperative Deep Q -Learning Framework for Environments Providing Image Feedback

    Get PDF
    In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation of the empirical cost, and the approximation error reduces as learning progresses, irrespective of the size of the network. Using simulation analysis, we show that the proposed methods enable faster learning and convergence and require reduced buffer size (thereby increasing the sample efficiency)

    Design and training of deep reinforcement learning agents

    Get PDF
    Deep reinforcement learning is a field of research at the intersection of reinforcement learning and deep learning. On one side, the problem that researchers address is the one of reinforcement learning: to act efficiently. A large number of algorithms were developed decades ago in this field to update value functions and policies, explore, and plan. On the other side, deep learning methods provide powerful function approximators to address the problem of representing functions such as policies, value functions, and models. The combination of ideas from these two fields offers exciting new perspectives. However, building successful deep reinforcement learning experiments is particularly difficult due to the large number of elements that must be combined and adjusted appropriately. This thesis proposes a broad overview of the organization of these elements around three main axes: agent design, environment design, and infrastructure design. Arguably, the success of deep reinforcement learning research is due to the tremendous amount of effort that went into each of them, both from a scientific and engineering perspective, and their diffusion via open source repositories. For each of these three axes, a dedicated part of the thesis describes a number of related works that were carried out during the doctoral research. The first part, devoted to the design of agents, presents two works. The first one addresses the problem of applying discrete action methods to large multidimensional action spaces. A general method called action branching is proposed, and its effectiveness is demonstrated with a novel agent, named BDQ, applied to discretized continuous action spaces. The second work deals with the problem of maximizing the utility of a single transition when learning to achieve a large number of goals. In particular, it focuses on learning to reach spatial locations in games and proposes a new method called Q-map to do so efficiently. An exploration mechanism based on this method is then used to demonstrate the effectiveness of goal-directed exploration. Elements of these works cover some of the main building blocks of agents: update methods, neural architectures, exploration strategies, replays, and hierarchy. The second part, devoted to the design of environments, also presents two works. The first one shows how various tasks and demonstrations can be combined to learn complex skill spaces that can then be reused to solve even more challenging tasks. The proposed method, called CoMic, extends previous work on motor primitives by using a single multi-clip motion capture tracking task in conjunction with complementary tasks targeting out-of-distribution movements. The second work addresses a particular type of control method vastly neglected in traditional environments but essential for animals: muscle control. An open source codebase called OstrichRL is proposed, containing a musculoskeletal model of an ostrich, an ensemble of tasks, and motion capture data. The results obtained by training a state-of-the-art agent on the proposed tasks show that controlling such a complex system is very difficult and illustrate the importance of using motion capture data. Elements of these works demonstrate the meticulous work that must go into designing environment parts such as: models, observations, rewards, terminations, resets, steps, and demonstrations. The third part, on the design of infrastructures, presents three works. The first one explains the difference between the types of time limits commonly used in reinforcement learning and why they are often treated inappropriately. In one case, tasks are time-limited by nature and a notion of time should be available to agents to maintain the Markov property of the underlying decision process. In the other case, tasks are not time-limited by nature, but time limits are used for convenience to diversify experiences. This is the most common case. It requires a distinction between time limits and environmental terminations, and bootstrapping should be performed at the end of partial episodes. The second work proposes to unify the most popular deep learning frameworks using a single library called Ivy, and provides new differentiable and framework-agnostic libraries built with it. Four such code bases are provided for gradient-based robot motion planning, mechanics, 3D vision, and differentiable continuous control environments. Finally, the third paper proposes a novel deep reinforcement learning library, called Tonic, built with simplicity and modularity in mind, to accelerate prototyping and evaluation. In particular, it contains implementations of several continuous control agents and a large-scale benchmark. Elements of these works illustrate the different components to consider when building the infrastructure for an experiment: deep learning framework, schedules, and distributed training. Added to these are the various ways to perform evaluations and analyze results for meaningful, interpretable, and reproducible deep reinforcement learning research.Open Acces

    Lifelong Reinforcement Learning On Mobile Robots

    Get PDF
    Machine learning has shown tremendous growth in the past decades, unlocking new capabilities in a variety of fields including computer vision, natural language processing, and robotic control. While the sophistication of individual problems a learning system can handle has greatly advanced, the ability of a system to extend beyond an individual problem to adapt and solve new problems has progressed more slowly. This thesis explores the problem of progressive learning. The goal is to develop methodologies that accumulate, transfer, and adapt knowledge in applied settings where the system is faced with the ambiguity and resource limitations of operating in the physical world. There are undoubtedly many challenges to designing such a system, my thesis looks at the component of this problem related to how knowledge from previous tasks can be a benefit in the domain of reinforcement learning where the agent receives rewards for positive actions. Reinforcement learning is particularly difficult when training on physical systems, like mobile robots, where repeated trials can damage the system and unrestricted exploration is often associated with safety risks. I investigate how knowledge can be efficiently accumulated and applied to future reinforcement learning problems on mobile robots in order to reduce sample complexity and enable systems to adapt to novel settings. Doing this involves mathematical models which can combine knowledge from multiple tasks, methods for restructuring optimizations and data collection to handle sequential updates, and data selection strategies that can be used to address resource limitations
    corecore