58 research outputs found

    Experimental Evaluation of Branching Schemes for the CSP

    Full text link
    The search strategy of a CP solver is determined by the variable and value ordering heuristics it employs and by the branching scheme it follows. Although the effects of variable and value ordering heuristics on search effort have been widely studied, the effects of different branching schemes have received less attention. In this paper we study this effect through an experimental evaluation that includes standard branching schemes such as 2-way, d-way, and dichotomic domain splitting, as well as variations of set branching where branching is performed on sets of values. We also propose and evaluate a generic approach to set branching where the partition of a domain into sets is created using the scores assigned to values by a value ordering heuristic, and a clustering algorithm from machine learning. Experimental results demonstrate that although exponential differences between branching schemes, as predicted in theory between 2-way and d-way branching, are not very common, still the choice of branching scheme can make quite a difference on certain classes of problems. Set branching methods are very competitive with 2-way branching and outperform it on some problem classes. A statistical analysis of the results reveals that our generic clustering-based set branching method is the best among the methods compared.Comment: To appear in the 3rd workshop on techniques for implementing constraint programming systems (TRICS workshop at the 16th CP Conference), St. Andrews, Scotland 201

    Optimal Placement of Valves in a Water Distribution Network with CLP(FD)

    Full text link
    This paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savic (2008) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-called hydroinformatics can benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.Comment: Best paper award at the 27th International Conference on Logic Programming - ICLP 2011; Theory and Practice of Logic Programming, (ICLP'11) Special Issue, volume 11, issue 4-5, 201
    • …
    corecore