6 research outputs found

    Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions

    Full text link
    The driving force behind deep networks is their ability to compactly represent rich classes of functions. The primary notion for formally reasoning about this phenomenon is expressive efficiency, which refers to a situation where one network must grow unfeasibly large in order to realize (or approximate) functions of another. To date, expressive efficiency analyses focused on the architectural feature of depth, showing that deep networks are representationally superior to shallow ones. In this paper we study the expressive efficiency brought forth by connectivity, motivated by the observation that modern networks interconnect their layers in elaborate ways. We focus on dilated convolutional networks, a family of deep models delivering state of the art performance in sequence processing tasks. By introducing and analyzing the concept of mixed tensor decompositions, we prove that interconnecting dilated convolutional networks can lead to expressive efficiency. In particular, we show that even a single connection between intermediate layers can already lead to an almost quadratic gap, which in large-scale settings typically makes the difference between a model that is practical and one that is not. Empirical evaluation demonstrates how the expressive efficiency of connectivity, similarly to that of depth, translates into gains in accuracy. This leads us to believe that expressive efficiency may serve a key role in the development of new tools for deep network design.Comment: Published as a conference paper at ICLR 201

    Generalized Tensor Models for Recurrent Neural Networks

    Full text link
    Recurrent Neural Networks (RNNs) are very successful at solving challenging problems with sequential data. However, this observed efficiency is not yet entirely explained by theory. It is known that a certain class of multiplicative RNNs enjoys the property of depth efficiency --- a shallow network of exponentially large width is necessary to realize the same score function as computed by such an RNN. Such networks, however, are not very often applied to real life tasks. In this work, we attempt to reduce the gap between theory and practice by extending the theoretical analysis to RNNs which employ various nonlinearities, such as Rectified Linear Unit (ReLU), and show that they also benefit from properties of universality and depth efficiency. Our theoretical results are verified by a series of extensive computational experiments.Comment: Accepted as a conference paper at ICLR 201

    Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions

    Full text link
    The driving force behind convolutional networks - the most successful deep learning architecture to date, is their expressive power. Despite its wide acceptance and vast empirical evidence, formal analyses supporting this belief are scarce. The primary notions for formally reasoning about expressiveness are efficiency and inductive bias. Expressive efficiency refers to the ability of a network architecture to realize functions that require an alternative architecture to be much larger. Inductive bias refers to the prioritization of some functions over others given prior knowledge regarding a task at hand. In this paper we overview a series of works written by the authors, that through an equivalence to hierarchical tensor decompositions, analyze the expressive efficiency and inductive bias of various convolutional network architectural features (depth, width, strides and more). The results presented shed light on the demonstrated effectiveness of convolutional networks, and in addition, provide new tools for network design.Comment: Part of the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) Special Issue on Deep Learning Theor

    Deep Compressive Autoencoder for Action Potential Compression in Large-Scale Neural Recording

    Full text link
    Understanding the coordinated activity underlying brain computations requires large-scale, simultaneous recordings from distributed neuronal structures at a cellular-level resolution. One major hurdle to design high-bandwidth, high-precision, large-scale neural interfaces lies in the formidable data streams that are generated by the recorder chip and need to be online transferred to a remote computer. The data rates can require hundreds to thousands of I/O pads on the recorder chip and power consumption on the order of Watts for data streaming alone. We developed a deep learning-based compression model to reduce the data rate of multichannel action potentials. The proposed model is built upon a deep compressive autoencoder (CAE) with discrete latent embeddings. The encoder is equipped with residual transformations to extract representative features from spikes, which are mapped into the latent embedding space and updated via vector quantization (VQ). The decoder network reconstructs spike waveforms from the quantized latent embeddings. Experimental results show that the proposed model consistently outperforms conventional methods by achieving much higher compression ratios (20-500x) and better or comparable reconstruction accuracies. Testing results also indicate that CAE is robust against a diverse range of imperfections, such as waveform variation and spike misalignment, and has minor influence on spike sorting accuracy. Furthermore, we have estimated the hardware cost and real-time performance of CAE and shown that it could support thousands of recording channels simultaneously without excessive power/heat dissipation. The proposed model can reduce the required data transmission bandwidth in large-scale recording experiments and maintain good signal qualities. The code of this work has been made available at https://github.com/tong-wu-umn/spike-compression-autoencoderComment: 19 pages, 13 figure

    Implicit Regularization in Deep Learning May Not Be Explainable by Norms

    Full text link
    Mathematically characterizing the implicit regularization induced by gradient-based optimization is a longstanding pursuit in the theory of deep learning. A widespread hope is that a characterization based on minimization of norms may apply, and a standard test-bed for studying this prospect is matrix factorization (matrix completion via linear neural networks). It is an open question whether norms can explain the implicit regularization in matrix factorization. The current paper resolves this open question in the negative, by proving that there exist natural matrix factorization problems on which the implicit regularization drives all norms (and quasi-norms) towards infinity. Our results suggest that, rather than perceiving the implicit regularization via norms, a potentially more useful interpretation is minimization of rank. We demonstrate empirically that this interpretation extends to a certain class of non-linear neural networks, and hypothesize that it may be key to explaining generalization in deep learning

    Depth Enables Long-Term Memory for Recurrent Neural Networks

    Full text link
    A key attribute that drives the unprecedented success of modern Recurrent Neural Networks (RNNs) on learning tasks which involve sequential data, is their ability to model intricate long-term temporal dependencies. However, a well established measure of RNNs long-term memory capacity is lacking, and thus formal understanding of the effect of depth on their ability to correlate data throughout time is limited. Specifically, existing depth efficiency results on convolutional networks do not suffice in order to account for the success of deep RNNs on data of varying lengths. In order to address this, we introduce a measure of the network's ability to support information flow across time, referred to as the Start-End separation rank, which reflects the distance of the function realized by the recurrent network from modeling no dependency between the beginning and end of the input sequence. We prove that deep recurrent networks support Start-End separation ranks which are combinatorially higher than those supported by their shallow counterparts. Thus, we establish that depth brings forth an overwhelming advantage in the ability of recurrent networks to model long-term dependencies, and provide an exemplar of quantifying this key attribute. We empirically demonstrate the discussed phenomena on common RNNs through extensive experimental evaluation using the optimization technique of restricting the hidden-to-hidden matrix to being orthogonal. Finally, we employ the tool of quantum Tensor Networks to gain additional graphic insights regarding the complexity brought forth by depth in recurrent networks.Comment: This document is an extension of arXiv:1710.09431 in the form of a Master's thesi
    corecore